
NOVEMBER 1989 • VOL4 N06 • TEN DOLLARS

Mild

Examining NewWave, Hewlett-Packard's
Graphical Object-Oriented Environment
Hewlett-Packard's NewWave is part of the new generation of graphical
environments based on object-oriented programming. This article explores the
concept of object-oriented programming and how it relates to the NewWave
environment, then presents some sample applications and scripts.Agent
Emulating the UNIX® RS-232 General
Serial I/O Interface Under DOS
RS-232 serial communication is a means of transferring information between
DOS and UNIX applications and a terminal. UNIX serial I/O and a device driver
that emulates it under DOS are examined, then techniques for writing applications
that use RS-232 communications are discussed.

Simplifying Pointer Syntax for Clearer,
More Accurate Programming
While pointers can simplify your C code, they can be difficult to use and often
produce unwanted side effects. This article dissects some simple pointer
examples, builds them into compact and efficient pieces of code, and examines
the side effects they can produce.

1000 ’a' i / * c7

1001 *z* <-] /* d */

1002

1010 1001 — r p 7

1014 1000 -------- /* p2 7

1018

Integrating Subsystems and Interprocess
Communication in an OS/2 Application
The final article in our series designed to introduce you to OS/2 programming
presents an application that integrates the topics covered previously. It shows you
how to implement an event-driven, message-based queue that you can use to
create applications whose architecture is similar to that of Presentation Manager.

Hidden

Systen

firchiue

Exploring Dynamic-Link Libraries with a
Simple Screen Capture Utility
Dynamic-link libraries form the backbone of the Windows™ environment. This
article examines DLLs and keyboard hook functions as a means of capturing
screen images and copying them to the Windows clipboard, and provides you
with the complete source code for this useful utility.

{
wArea=CAPTURE_OFF;
UnhookWindowsHook(WH_KE

(FARPROC
EnableWindow(GetDlgltem(hD

DLGSC_MONOC
1
CheckMenultem(GetMenu(hWn<

MF_UNCHECKE
break;

Checkers Part I: Design Goals for Building
a Complete Graphical Application
In this issue, MSJ presents the specification for a complex CHECKERS game
for OS/2 Presentation Manager (PM). Charles Petzold will demonstrate PM
programming techniques in the next few issues, covering such topics as graphics,
child windows, dynamic-link libraries, and network-aware applications.

SpyGlass: A Utility for Fine Tuning the
Pixels in a Graphics Application
This article presents a handy display-enlargement utility, which allows you to see
easily how pixels are aligned on a high-resolution monitor in your Windows
application. In so doing, the article demonstrates some graphic device interface
(GDI) programming techniques.

JONATHAN D. LAZARUS
Editor and Publisher•

EDITORIAL
KAREN STRAUSS

Associate Editor
JOANNE STEINHART

Production Editor
LAURA EULER
Editorial Assistant•

ART
MICHAEL LONGACRE

Art Director
VALERIE MYERS

Associate Art Director
•

CIRCULATION
STEVEN PIPPIN

Circulation Director
L. PERRIN TOMICH

Assistant to the Publisher
MARIA MEADE

Administrative Assistant

bject-oriented programming (oop> has
become the favored programming seminar topic of the late
1980s. Many experts believe that it will be the programming
paradigm of the 90s. OOP is a programming technique in which
data, along with the code that operates on it, is encapsulated into
a single entity known as an object. The object is designed to

handle a set of operations that define what can be done with it. Objects have
the ability to “inherit” the behavior of similar objects, which is one of the
most important features of OOP. OOP is particularly valuable because it
allows the dynamic collection of disparate objects in compound documents.

Smalltalk, the first object-oriented environment, was developed in 1967 at
the Xerox Palo Alto Research Center. Since then, OOP has been the almost
exclusive provence of academics and technical journals. The development
of C++, a language combining object-oriented techniques with the popular
C language, has helped to bring OOP into mainstream programming.

NewWave by Hewlett-Packard® is one of the first graphical environments
to benefit from the renewed interest in OOP. In this issue, we explore
NewWave from the development of applications to the use of scripts, taking
a special look at its Object Management Facility.

Also in this issue, we examine the UNIX® RS-232 serial interface. This
interface, independent from hardware, is very easy to work with; we explore
a device driver that emulates it under DOS. And Charles Petzold begins a
series, using a checkers program to demonstrate Presentation Manager
programming techniques. You'll soon be able to play checkers under OS/2
Presentation Manager; at the same time, you'll become familiar with
Graphics Programming Interface (GPI) techniques. —Ed.

o

Microsoft Systems Journal (ISSN# 0889-9932) is
published bimonthly by Microsoft Corporation at 666

Third Avenue, New York, NY 10017. Single-copy price
including first-class postage: $10.00. One-year

subscription rates: U.S., $50. Canada/Mexico, $65.
International rates available on request. Subscription

inquiries and orders should be directed to the Circulation
Department, Microsoft Systems Journal, P.O. Box 1903,

Marion, OH 44305. Subscribers in the U.S. may call
(800) 669-1002, all others (614) 382-3322 from 8:30 am
to 4:30 pm, Mon—Fri. Second-class postage rates paid

at New York, NY and additional mailing offices.
POSTMASTER: Send address changes to Circulation

Department, Microsoft Systems Journal, P.O. Box 1903,
Marion, OH 44305.

MSJ is now available on microfilm and microfiche from
University Microfilms Inc., 300 North Zeeb Road, Ann

Arbor, Ml 48106

Manuscript submissions and all other correspondence should be addressed to Microsoft Systems Journal,
16th Floor, 666 Third Avenue, New York, NY 10017.

Copyright© 1989 Microsoft Corporation. All rights reserved; reproduction in part or in whole without permission is prohibited.

Microsoft Systems Journal is a publication of Microsoft Corporation, 16011 NE 36th Way, Box 97017, Redmond, WA 98073-9717. Officers: William H. Gates, III, Chairman of the Board and Chief Executive Officer; Jon Shirley, President and Chief Operating Officer;
Francis J. Gaudette, Treasurer; William Neukom, Secretary.

Examining NewWave,
Hewlett-Packard’s Graphical
Object-Oriented Environment

01

Alan Cobb and Jonathan Weiner

ewWave by
Hewlett-Packard offers
a wide range of ad-
vanced features for
Microsoft® Windows™

Version 2.11 graphical environment-
based applications. It is in effect an extra
layer on top of the MS-DOS® operating
system, enhancing and extending the
services provided by MS-DOS1 and
Windows2. There are five areas in which
NewWave surpasses Windows: control,
communication, integration, abstrac-
tion, and ease of use. Because NewWave
controls programs and provides new
methods of communication between
them, users can integrate several pro-
grams to do one task easily. Further-
more, NewWave enables the users to
deal with the computer at a higher level
of abstraction. That is, users can use
simpler techniques to do broader, more
complicated tasks—similar to the way
programmers can do much more with
one line of code in a high-level language
than with one line of Assembler. Finally,
NewWave is easy to use. Its advanced
help and Computer-Based Training
(CBT) systems make it simple for users
to learn how to avail themselves of its
services.

At the implementation level,
NewWave is built upon multiple
Windows programs and dynamic-link
libraries (DLLs), as well as its data files.
Windows developers can access these
features by making calls to the New-
Wave functional interface and con-

Alan Cobb is a consultant and developer of
Presentation Manager and Windows applications

based in Redwood City, Ca. Jonathan Weiner
developed various NewWave system components

at Hewlett-Packard and is now the Technical
Accounts Manager for NewWave ISVs.

N Action Edit Objects Uiew Settings Task Help
NewWaue Office

PrintersFile Drawer Diagnostic Dictionaries NLS Demo

CBT Global Container Agent Alan's Text Note Encapsulated Object Animation Demo

lllkl
SDK NW Layout DemoAlan's Agent Task Sales Report Agent SDK NW Shape Demo SDK Text Object Demo

Image: CFO Woman

NewWave Of f i ce
fiction Ed i t

Title
Agent
CBT Global Container
Diagnostic
Dictionaries
DOSFileAttach________
File Drawer
NLS Dewo
Printers
Waste Basket
Alan's Agent Task
Alan's Text Note
Animation Deno
Encapsulated Object
Iwage: Bio Logo
Inage: New CFO
wise file
Monthly Report
Nested Modified Shapes
Sales Report
Sales Report Agent
SDK NW Layout Deno
SDK Text Object Deno

Objec ts Uiew Se t t ings Task Help

Figure 1
The NewWave
Office start-up
screen.

Agent Task
Text Note
Animation
Encap Installer
NewWave (wage
NewWave Iwage

Figure 2
The start-up
screen can also
be shown in
regular text view
form.

NevWm Write
Ne*W»e Write
NewWave Write
Agent Task

Hp’l<

NOVEMBER 1989

MICROSOFT
SYSTEMS
JOURNAL

the Report

Parent Object__
Destination

View of
Spreadsheet

View of
Image

Visual Links
or Views

Bitmapped
Image Object
Our New CFO"

Spreadsheet
Object

Child Object_
Source

icon. NewWave has a record of
which tool (EXE file) was used
to create that object’s data file.
The appropriate program is
automatically started and the
data is read into it. Thus, the user
is raised above the details of the
file system. NewWave also has a
one-step drag-and-drop tech-
nique used for operations like
copying, deleting, and printing
objects. For example, to delete a
data object or folder of objects,
the user just clicks on the object,
drags the mouse to the Waste
Basket icon, and drops it in.

Features
One of the principal benefits

of NewWave is its superior abil-
ity to deal with compound docu-
ments. To get a better feel for
NewWave’s features, we will
look at a simple demonstration
system, consisting of a com-
pound monthly report document
that contains a nested bitmapped
image and a nested spreadsheet.
Figure 3 shows the structure of
this document.

Compound documents are
data objects built from a tree of
other nested data objects. The
component objects can be
pieces of text, graphs, spread-
sheets, Tagged Image File For-
mat (TIFF) images, or even
captured voice recordings or
animation sequences. In the
example, the pieces are incor-
porated into a compound object
and manipulated by a prototype
NewWave-capable word pro-
cessor called NewWave Write.

There are several methods
that can be used to combine the
nested objects into a larger
compound document. The sim-
plest is to drag the icon of the
nested object (the source object)
and drop it into the larger desti-
nation document at the point
where it is to appear. This
method moves the document
completely inside the destina-
tion, so the separate source icon

02

forming to its interapplication
communication protocols.

Using NewWave
Although under the surface

NewWave is constructed from
normal Windows programs, the
user interacts with the program
in quite a different way. Instead
of beginning work in the MS-
DOS Executive with its familiar
directory listing, the first thing a
NewWave user sees is the
NewWave Office window,
shown in Figure 1. Users can also
access a conventional text
listing of the icons, illustrated in
Figure 2.

The Office can be resized like
any other Windows program,
but it usually covers the entire
screen. On its surface is a set of
icons representing familiar
office tools such as the Printer,
the Waste Basket, and the File
Drawer; data objects such as the
file folders, simple text docu-
ments and images; and com-
pound documents built from
smaller objects of text, graphs,
and images. While the screen
will show only one copy of a tool
at a time, it can show multiple
instances of data objects.

To work with a particular data
object, just double click on its

ONE BENEFIT OF NEWWAVE
IS ITS ABILITY TO DEAL WITH

COMPOUND DOCUMENTS,
WHICH ARE DATA OBJECTS

BUILT FROM A TREE OF
NESTED DATA OBJECTS. THE
COMPONENT OBJECTS CAN

BE TEXT, GRAPHS,
SPREADSHEETS, TIFF

IMAGES, OR EVEN
CAPTURED VOICE

RECORDINGS OR ANIMATION
SEQUENCES. THE SIMPLEST

METHOD FOR COMBINING
THE NESTED OBJECTS IS TO

DRAG THE ICON OF THE
SOURCE OBJECT AND DROP

IT INTO THE DESTINATION
DOCUMENT AT THE POINT
WHERE IT IS TO APPEAR.

NOVEMBER 1989

A NewWave Glossary

NewWave has its own definitions for a number of terms. Most of them are illustrated in
Figures 3, 4 and 5.will no longer be shown in the

Office window. Figure 4 shows
the sample object on the screen
after it has been constructed.

But what if you also want to
show the source object, say the
spreadsheet, in another com-
pound document at the same
time? In that case, you can
simultaneously share the single
source with multiple destination
objects. To do this, highlight the
source icon with a mouse click,
then select Share from the Edit
menu. A reference to the source
object is now on the clipboard.
Now you can go into one or more
destination documents and use
the clipboard’s familiar Paste
command to insert a nested view
of the source document. After
the pasting, the separate icon for
the source will still appear in the
NewWave Office window.

The full power of NewWave
is demonstrated when you need
to modify the compound docu-
ment or one of its components.
For example, suppose you
decide to add another column to
the nested spreadsheet. To
access the spreadsheet, simply
double click on the area where it
is nested. Since the NewWave
database of links or views
knows which tool and data files
were used to create the nested
spreadsheet, it can automati-
cally start the tool application
and load the spreadsheet for
modification. So you can see
what is happening, NewWave
explodes the nested window and
grays the area where it is
normally nested. The exploded
window will be the main win-
dow of the application that was
used to create the source object.
In our spreadsheet example, the
application might be Microsoft
Excel. Figure 5 shows the nested
TIFF picture being modified.

When a conventional pro-
gram needs to support a new
data type, new code to handle
that type must be added to the
application. Another feature of

03NewWave Terms:
Objects All the icons in the NewWave Office window represent either tools or data
objects.

Office Tools or System Objects Tool objects are tools such as the Waste Basket, File
Drawer, and Printer. They are associated with some type of fixed system service. They
cannot be copied or deleted by the user.

User Objects User objects are objects that can be freely copied, deleted, cut, pasted, or
shared by the user.

Data Objects Data objects are the combination of an application that creates and
manipulates data and a specific data file that was created with it. For example, a word
processor and a memo created with it would form one object. Under NewWave the user
doesn’t work with applications but rather with these bundled pairs of application and data.

Compound Objects Compound objects are built from a combination of smaller objects.
For example, a spreadsheet object could have several small text note objects attached to it
to explain some of the calculations. The aggregate group can be copied, printed, and moved
as a single entity via the clipboard.

Container Objects Containers are objects like the File Drawer, File Folders, and Waste
Basket, that are used to hold objects in a group. They are represented by a single icon in the
Office window. Containers can be opened to show the objects they hold.

Views or Links Objects can be connected to one another in several different ways called
links or views.

Visual Views or Links In a visual link, one object projects a view of itself into another.
The projected object is shown nested inside the destination object. For example, a graph
object could be connected with a visual view to a text report in which it appears. The nested
object does all the drawing of its own view.

Data Passing Links Data links or views actually pass pieces of binary data between
objects. For example, a communications program could pass stock prices to a spreadsheet
object for analysis.

Simple Links Container objects are connected by simple links to the objects they enclose.
There is no passing of data or visual views between them.

Source and Destination Objects The source object is the one either sending binary data
via a data link or else projecting a view of itself via a visual view into a destination object.

Child and Parent Objects A child object is either a source object or an object held within
a container. A parent object is either the destination of a visual or data link or else a container
holding other objects. One object can be simultaneously both a parent to objects below it
and a child to objects above it.

Other Terms:
API Although API (Application Program Interface) is normally a generic term that refers
to any functional interface to a subsystem, NewWave uses it to refer specifically to the
interface to its Agent, CBT, and Help systems.

Methods Objects communicate among themselves and with NewWave by sending
messages to each other. For example, the message DISPLAY VIEW is sent from a parent
object to a child during the setup of a visual link. The code in the child that processes a
particular message is referred to as a method.

Agent An Agent is like a batch or macro file for controlling data objects, tools and other
programs in the NewWave environment. The Agent’s commands are written in an Agent
task script language. Individual scripts are shown in the NewWave Office as icons.

Share Although one child object can be moved or pasted completely into a single parent
object, it can also be shared into the same object.A child can be shared into multiple objects
at once. For example, one chart could appear in several reports at the same time. When the
child chart is updated, it would be shown in its updated form in all the parent report objects.

NOVEMBER 1989

MICROSOFT
SYSTEMS
JOURNAL

NewWave is that it eliminates
this duplication of code by log-
ically joining all application
data files to the programs that
created and edited them. When it
is time to view or manipulate the
source data, the destination
object can simply ask the source
object to do it. This is the prin-
cipal sense in which NewWave
is object-oriented. In fact, a
NewWave object is defined as
this paired combination of data
and the application required to
manipulate it. NewWave is also
object-oriented in that objects

pass command mes-
sages back and forth to
each other. The standard
term "method" is used to
describe the code used
by an object to process
one of its messages.

What if you start
modifying the visually
linked image separately
while the larger com-
pound document is
closed? NewWave’s
database of interobject
links—part of the Object
Management Facility
(OMF) discussed be-
low—takes care of this
also. When the larger
report is later opened or
printed, it will see a flag
in the database telling it
that the graph has
changed. The report ob-
ject can then ask the
graph to rerender the
projected view of itself.

NewWave allows you
to paste the report into
an even larger com-
pound document. Nest-
ed groups of compound
objects can be moved,
copied, printed, erased,
or mailed all at once,
simply by selecting the
overall object with the
mouse and dragging it to
the destination or by
copying and pasting it
through the clipboard.

04 Advanced Features
Now we will extend the sam-

ple program to include ad-
vanced NewWave features. In
its present form the sample
monthly report only uses
NewWave’s visual links (also
called visual views). That is, the
source objects are only con-
nected to the larger destination
visually; there is no actual pass-
ing of data between the appli-
cations. To pass binary data,
such as an array of integers from
a spreadsheet, NewWave uses
its second main type of link, the
data passing link.

Figure 6 shows how data pass-
ing links can be added to the
sample program. We added two
new hypothetical applications,
a NewWave-capable terminal
program and a NewWave-
capable graphing program. A
NewWave Agent task script,
which is like an advanced batch
file or macro for Windows pro-
grams, has also been added. The
script is used to make all the
applications work as a team to
produce the monthly report.

To produce the report, the
controlling Agent script first
sends the appropriate com-
mands to the NewWave-capable
terminal, causing it to dial all of
the company’s regional offices.
The Agent script automatically
collects the monthly sales data
from each office. Details of the
quantities of products sold are
passed via a NewWave data
passing link to the spreadsheet.
As in the first part of the
example, the spreadsheet uses a
visual link to project the
spreadsheet grid into the report,
but now it also uses a data
passing link to pass the summa-
rized spreadsheet data to a
NewWave-capable graphing
program. The graphing program
then uses a visual link to display
itself inside the report.

The abstraction of file folder
icons to represent directories

NEWWAVE AVOIDS THE
NEED TO DUPLICATE CODE

FOR NEW DATA TYPES IN
APPLICATIONS BECAUSE IT

LOGICALLY JOINS ALL
APPLICATION DATA FILES TO

THE PROGRAMS THAT
CREATED AND EDITED THEM.

Help

NLSDemo

(NewWaue
Document

|Week1iWeek2?Week3|
BMWs 1 25| 6l 17j
Hondas j ' ~59j 31= 47

W/s

Example of a compound document.Figure 4

Help

Paragraph Document

Help

Figures Editing the nested TIFF image.

NOVEMBER 1989

Figure 6: NewWave Application System with Data Passing Links

Folder

Second to Last Month's

Last Month's

Final Output
Compound Report

Object

Bitmapped
Image Object

"Our New CFO"

NewWave
Graph ObjectAgent Task Script

NewWave
Spreadsheet

Object Visual Link or View — — — — —
Data Passing Link ------------------
Control by Task script

NewWave
Communications

Terminal App.
Modem

Action Edit Objects Uiew Set t ings lask Help

Action Edit Objects Uiew Jask Help

IBB
!NW Layout Demo

Action Edit Objects
Uiew Jask Help

DM

and the files they contain is
another advanced feature of
NewWave. To illustrate this
feature, the sample also includes
the monthly report in a folder of
all monthly reports for the year.
The folders can be nested inside
each other as well as inside the
File Drawer icon. Folders are
opened with a simple double
click. Figure 7 shows the open
File Drawer; the Budgets folder
within has also been opened.

The connection between filed
objects is accomplished with
NewWave’s third type of link,
the simple link. Instead of pas-
sing views or data these links
simply enclose one object inside
a parent container object. Other
objects can also be inserted into

► EKQ| The File
Drawer and budgets folders
have been opened.

Figure?

NOVEMBER 1989

MICROSOFT
SYSTEMS
JOURNAL

Figure 8: Overal l Block D iag ramo fNewWave06
User

Microsoft Windows

NewWave
Application

X X X X X X X '
Z / Z Z Z Z Z Z
X X X X X X X

x z / z z z z z
X X X X X X X

C Help X <
/ / z z
X X X X X X X

z z z z z z z z

Help
Text

CBT

Task
LanguageLessons

or removed from a con-
tainer object, such as the
Waste Basket, with the
drag-and-drop method.

OMF and API
Systems

Now that you are
familiar with the features
of NewWave, we will
describe its major com-
ponents (some of which
were referred to earlier).
NewWave consists of
two main systems, the
OMF and the API (see
Figure 8). The API in turn
is composed of three
smaller systems: the

Agent task script system, the
Help system, and the CBT. The
OMF is used to record and

Agent script system handles the
recording, playback, and editing
of the task scripts used to control
NewWave applications. The
API, Help, and CBT systems
provide a high-quality, pre-
written, standard foundation for
adding help, demos, and
t r a in ing to NewWave
applications.

All the objects in a NewWave
system are connected in a tree.
Near the top of the tree is the
NewWave Office. It is a parent
to every object that appears in
the Office window. For exam-
ple, the File Drawer is a child of
the NewWave Office, and it in
turn has its own children in the
form of folders. Figure 9 shows
one of the diagnostic utilities
that comes with the system; this
utility allows you to traverse the
object tree. A child object is

=r NewWaue Of f i ce 1*1 frl
Action Edit Objects Uiew Settings Task Help

Dictionaries NLSDemoFile Drawer Waste Basket Printers

K
CBT Global Container Encapsulated Object Animation DemoDOSFileAttach Alan's Text NoteAgent

OMF On Idne D iagnost ic

Trace Control Prop Displatjr
Displaying Object Tag : 2
Class Name : "HPOFFICE DESK"
Object T i t le : "NewWaue OFFice"; size is 358 bytes
Object Fi lepath : "C:\HPNWDATA\HPOMF001\00000002"

Parents(1) | Children(16) ------>

1
l

146 (Ref 4eH) 144 (Ref 91H) 199 (Ref 92
133 (Ref 65H) 191 (Ref 64H) 196 (Ref 87
188 (Ref 88H) 169 (Ref 89H) 187 (Ref 8a
174 (Ref 8bH) 141 (Ref 8cH) 172 (Ref 8d
158
190

(Ref
(Ref

8eH)
cO0003ebH)

143 (Ref c00003eaH) 197 (Ref C0

Figure 9 This diagnostic utility allows the
user to traverse the object tree.

supervise the visual and data
links between objects. The API

NOVEMBER 1989

Figure 10: Main Parts of a NewWave Application
enclosed in a container or acts as
the source in a visual or data
link. One child can have multi-
ple parents (a graph object, for
example, can have visual views
projected into three parent
reports at the same time), which
makes the structure more than a
simple tree.

Processors
Every NewWave application

contains two systems, the
Action processor and the Com-
mand processor, as shown in
Figure 10. The Action processor
translates user actions, such as
mouse clicks and menu selec-
tions, into one of the commands
that the NewWave application
can perform. Often, several
different actions will be trans-
lated into the same command.
For example, using an acceler-
ator key sequence (such as Alt-
F-x) can execute the same
command as selecting a menu
item with the mouse (such as
clicking on File, then Exit).

The Command processor pro-
vides all the actual functionality
of the application. It executes
commands that are passed to it
from several possible sources.
For example, commands can
come directly from the Action
processor as a result of current
user keystrokes and mouse
movements or be played back
from an Agent script. The Com-
mand processor must be able to
handle the full range of verbs in
the application’s command lan-
guage. Agent scripts are built
from this set of commands. This
is discussed in detail below.

Splitting the application’s
control system into Action and
Command processors makes it
much easier for NewWave to
implement the Agent macro
facility. That is, when New-
Wave records an Agent script, it
need not concern itself with the
details of the user’s actions. It
only has to store the series of
commands that result from the

07
User

Microsoft Windows

All Messages

NewWave Application

7 SS j ' j 'S j 'SSSSSf j ' j 'S j 'SSf j 'S
S.XXXXXXXXXXXXXXXXXXXXXzzzzzzzzzzzzzzzzzzzzzz
XXXXXXXXXXXXXXXXXXXXXXZ Z Z Z Z _ — zzzzz
????v Action Processor \ \Vz
S’zS z S zS zS z' kz z ‘z z z z "z z "z ‘z *z ’z ’ zWW
XXXXXXXXXXXXXXXXXXXXXX

■■ x x x x x x x x x x x x x x vxxxxxx - 'z zzzzzzzzzzzzzzzzzzzzz< X X X x x x x xxxxxxxxxxxxxx

/??? Command Processor ???

Action processor’s translation.
At a lower level, the Action

and Command processors are
supported by several other pro-
cessors and components. Figure
11 shows the system in detail.
This design enables the applica-
tion to run in one of five modes:
Playback, Record, Intercept (for
Help), Monitor (for CBT), or
Error mode. In Playback mode,
an Agent task script sends com-
mands to the application
through the API. In Record
mode, the user’s actions are
translated into commands and
stored in an Agent task script.
Intercept mode is entered when
the user asks for context-
sensitive help. The cursor
changes to a question mark, and
the user clicks on the item of
interest. In Monitor mode, all
commands are passed to the
CBT system before they are
executed. This allows the CBT
system to discard inappropriate
commands during a lesson and

EVERY NEWWAVE
APPLICATION CONTAINS

TWO SYSTEMS, THE ACTION
PROCESSOR AND THE

COMMAND PROCESSOR.
THE ACTION PROCESSOR

TRANSLATES USER ACTIONS
INTO A COMMAND THAT THE

APPLICATION CAN
PERFORM. THE COMMAND

PROCESSOR PROVIDES ALL
THE ACTUAL FUNCTIONALITY

OF THE APPLICATION,
EXECUTING COMMANDS
THAT ARE PASSED TO IT.

NOVEMBER 1989

MICROSOFT
SYSTEMS
JOURNAL

: Detail of Message Flow in a NewWave Application

User

Microsoft Windows

Modeless]
User Action I

Interface [
Component «

User Action
Interface

Component

TranslateModeless ■
Action |

Processor!

- Action
' Processor

Application
; Data

Modeless
Command
Interface

Component

\ Translate
\to External
S Processor

Command
Interface

Component

ModalModeless
Dialog Box

Processor

' Command'
/ Processor' Dialog Box

Component

Return
Interface

Component

Translate
to External

done for you. The NewWave
Software Development Kit
(SDK) gives detailed examples
of how to build the pieces. The
components (as opposed to pro-

destination, which is an error
message box for the user.

Although the system is com-
plex, the hard part of initial
design and debugging has been

guide the user in the right
direction. During Error mode,
any error notifications are
rerouted to the controlling
Agent instead of to the normal

NOVEMBER 1989

d Microsoft
Need a good

reason for
getting your own

subscription to
Microsoft
Sys t ems
Journal?

Ol’RNAI,I

I want to subscribe
to Microsoft Systems Journal.
Enter my order for the rate
and term I’ve checked below.
O 1 year $34.95 02 years $59.95

(Save 30%) (Save 40%)

Payment enclosed I’ll pay when invoiced

Name

Address

City State ZIP

Telephone Business Home

Just look at what you’ve been missing:

Designing a virtual memory
manager
Using Presentation Manager’s
Dynamic Data Exchange
Application Program Interface
Writing TSRs in C
Developing and debugging
embedded systems
applications
OS/2 kernel programming
BASIC as a professional
programming language
and much much more!
Need additional coaxing?
Subscribe for 1 year and save 30%
off the regular price. Subscribe for
2 years and save 40% (and protect
yourself from price increases).

Guarantee: If you are ever dissatisfied with MSJ, you're entitled to a full
refund on the unmailed portion of your subscription.
Note: Offer limited to new subscribers only. Regular price is $50 per year. Foreign subscribers add $15 per year
postage. Payment in U.S. funds. Please allow 6 to 8 weeks for delivery of first issue. Offer expires December 31, 1990.

EN9AB1-X

Q Microsoft T
□YSTEMSjouRNAL

IWBS3I I want to subscribe
to Microsoft Systems Journal.
Enter my order for the rate
and term I’ve checked below.
O 1 year $34.95 0 2 years $59 .95

(Save 30%) (Save 40%)

Payment enclosed I’ll pay when invoiced

Name

Address

City State ZIP

Telephone Business Home

Guarantee: If you are ever dissatisfied with MSJ, you’re entitled to a full
refund on the unmailed portion of your subscription.
Note: Offer limited to new subscribers only. Regular price is $50 per year. Foreign subscribers add $15 per year
postage. Payment in U.S. funds. Please allow 6 to 8 weeks for delivery of first issue. Offer expires December 31, 1990.

EN9AB1-X

Just fill out a card, drop it in
the mail, and the issues are
on their way.

Microsoft Systems Journal
Introductory Savings Coupon
for new subscribers only.

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 603 MARION, OH USA

POSTAGE WILL BE PAID BY ADDRESSEE

MICROSOFT SYSTEMS JOURNAL
P.O. BOX 1903
MARION OHIO 43306

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 603 MARION, OH USA

POSTAGE WILL BE PAID BY ADDRESSEE

MICROSOFT SYSTEMS JOURNAL
P.O. BOX 1903
MARION OHIO 43306

Ager* OPEN

FOCUS

ADJU!
[NDOW

Help

Layout Demo

Perform

A&out

09

Figure 12 Figure 13Create Agents task scripts by Viewing an Agent script.
recording user commands.

Diagnostic Dictionaries

EncapsulatedObject

,7

Action £dit Object play jask

Control Step Adjust
Pa in t . . .

□21

Figure 16_________ The animation system lets developers
create documentation and help files while designing

Figure 14 Agents can perform tasks at specified
times (here, the sixteenth of the month.)

a program.

Diagnostic

I ce land ic CANADIAN
DANISH
DUTCH
ENGLISH

PORTUGUESE
SPANISH

7 ICELANDIC
NCOMPUTER

Waste Basket Diagnostic

Encapsulated Object

Figure 17 Figure 18You can customize NewWave for NewWave SDK demo application.
different national languages without changing code.

NOVEMBER 1989

MICROSOFT
SYSTEMS
JOURNAL

Figure 15: Sample NewWave Task Script
superiority of the forms of links
NewWave has to the methods of
interprocess communication in
Windows. In Windows there are
no standard equivalents of the
visual views and simple con-
tainer links found in NewWave.
Nor are there Windows equiva-
lents to the share capability or
ability to move, print, copy, and
paste compound documents
NewWave possesses. These
features make it significantly
easier to organize and maintain
complex objects in NewWave
than in Windows. The Windows
Dynamic Data Exchange (DDE)
protocol does, however, provide
some of the same features as the
NewWave data passing links.
DDE moves data between two
applications via messages and
shared memory blocks. Both
DDE and NewWave data pass-
ing links allow one application
to update a linked program auto-
matically without requiring the
user to take any action. For
example, one conventional
Windows program can read
stock price data from Dow Jones
and pass the latest prices via
DDE to a graphing program for
real-time display.

The primary advantage that
NewWave data passing links
have over DDE is that they
provide several fairly complex
services that DDE users would
have to rewrite and debug from
scratch. Not only would a DDE
application need considerable
added code, that code would
have to be duplicated the same
way in all the other programs
with which the DDE application
was going to communicate.
NewWave moves much of that
common code out of individual
applications and into one
centralized, standardized, oper-
ating-system-style service.

Another way in which the
NewWave link services go
beyond DDE is that they are
persistent. When you shut down
two programs using DDE, the

10 '* Simple NewWave task script example. Copies a bitmapped image
»★ object called "Image: Our New CFO" to the clipboard, then
’♦ pastes this into a compound document called "Demo Report."
’* It repeats this append operation in a loop until the user
'* decides to exit. Author: Alan Cobb

TASK
bContinue# « 1
WHILE bContinue# » 1
FOCUS OFFICE "NewWave Office"
SELECT NEWWAVE_WRITE "Demo Report"
OPEN
SELECT NWImage "Image: Our New CFO"
COPY
FOCUS NEWWAVE_WRITE "Demo Report"
DO PASTE_INTO_REPORT
DO CLOSE_REPORT
MESSAGE bContinue# "Repeat process?" yesno ’ Loop again?

ENDWHILE
MESSAGE bTemp# "Exiting." ok
END
ENDTASK

' Set keyboard focus.

' Open report .

’ Copy to clipboard.

' Paste image.
' Save result.

’ Pause before exit.

Equivalent of PASTE command in pcode form.

PROCEDURE PASTE_INTO_REPORT
P COMMAND 4
PCODE "0400CD00"
RETURN

ENDPROC

Equivalent of CLOSE command in pcode form.

PROCEDURE CLOSE_REPORT
P COMMAND 8
PCODE "0800020001000100
RETURN

ENDPROC

cessors) are supplied by Hew-
lett-Packard. The user need only
change the variable names in
these components to match his
or her system. As shown in the
figure, any modeless dialog
boxes need to be supported with
their own Action processor.

The Translate to Internal and
Translate to External processors
convert commands between
Internal and External format.
Commands are stored in Exter-
nal binary form by Agent tasks.
This is the form passed to the
application for execution. The
application translates this to its
own private Internal format,
which can take whatever form is
necessary.

Compared to Windows
NewWave has several advan-

tages over Windows. One is the

UNDER NEWWAVE, A
SYSTEMWIDE DATABASE IN
THE OMF RECORDS A LIST
OF THE LINKS AMONG ALL

APPLICATIONS. AS SOON AS
A LINK IS CREATED, IT IS

RECORDED IN THE
DATABASE. WHEN

PROGRAMS ARE CLOSED,
THE LINK PERSISTS AND

WILL RESUME OPERATION
WHEN THE PROGRAMS ARE

RESTARTED.

NOVEMBER 1989

NewWave
Command and

Function
Summary

Class Dependent Commands for the
NewWave Office Window

Individual applications have their own unique set of commands that they will
accept. These are called Class Dependent Commands. Below is a subset of the
Class Dependent Commands for the NewWave Office.

Command Name Description
ABOUT?
ACTIVATE
ADDSELECTION
ADJUST WINDOW
ALIGNBYROWS
AUTO_ALIGNMENT
CHANGE ATTRIBUTES
CHANGE TITLE
CLOSE
CONTROL_PANEL

COPY
COPY TO
CREATE_A_NEW
CUT
EXPORT TO DISK FILE
ICONICVIEW
IMPORT_FROM_DISK_FILE
LIST_VIEW
LOCK DISPLAY
MAKE COPY
MANAGE.MASTERS
MANAGETOOLS
MAXIMIZE
MOVETO
OPEN"
OPEN_SELECTED_OBJECT
PASTE
PERFORM
PRINT
PRINT_LIST_OF_OBJECTS
RESTORE
SAVE_AS_MASTER
SELECT

Display “About ...” dialog box
Change the currently active window
Select the specified object
Move or size the current window
Align the icons in the Office window
Set auto_alignment (snap to grid) mode
Change attributes of a selected object
Change an object’s title
Close the currently active window
Execute the Windows Control EXE
program

Copy an object to the clipboard
Copy an object to a closed container
Create a new object
Delete selected objects to the clipboard
Serialize an object’s data to a disk file
Display objects in HP Office as icons
Deserialize an object from a disk file
Display a container’s objects as a list
Display dialog box to record password
Copy all selected objects in the window
Remove objects from the workspace
Change the selection of tools in the Office
Increase the current window’s size
Move selected objects to a container
Open all selected objects
Open an object
Paste objects from the clipboard
Perform an Agent task
Drop selected object on printer icon
Make a hard copy of container contents
Return a window to its default size
Save a copy of the object as a template
Select one object by class and title
Select all objects in the current window
Deselect all the objects in the window
Deselect one object by class and title
Select an open object by class and title
Insert selected objects into the mail room
Display the “Password” dialog box
Modify user name and time zone data
Share selected objects to the clipboard
Display path of an MS-DOS application
Show the links to an object
Show the links to an object’s parents
Open a linked parent
Snap objects to the nearest grid point
Move selected objects to the Waste Basket
Initiate a send or receive mail transfer

The Class Independent Commands are executed by the Agent itself at run time,
independent of any application object that may be open. Most of them either
manipulate task conversational windows or handle flow control of the Agent
task.

Command Name Description
CLEARWINDOW Clear a user conversational window
CLOSEWINDOW Close a conversational window
DEFINEWINDOW Define a user conversational window
DO Execute a procedure
EDITBOX Create an edit box in a conversational

window
END Terminate execution of a task
FOCUS Change focus to a specified object
GOTO Transfer control to a labeled statement
IF ELSE ENDIF Conditional execution
INPUT Create a window to prompt the user for input
JUSTIFY Justify text in a conversational window
LABEL Define a label
LOCATE Position the cursor in a conversational

window
MESSAGE Create a message window (OK, RETRY, and

so on)
ON ERROR DO Trap on any error condition
ON ESCAPE DO Trap on the escape key
ON TIMEOUT DO Trap on a timeout
OPENWINDOW Open a conversational window
OUTPUT Output text to a conversational window
PAUSE Halts execution temporarily
PROCEDURE ENDPROC Define a procedure
PUSHBUTTON Draw a pushbutton in a conversational

window
RETURN Exit a procedure
SCREEN Map logical screen and window coordinates
SET ERROR Set error trapping on or off
SET ESCAPE Set escape trapping
SET RATE Sets rate at which Agent executes commands
SET TIMEOUT Set timeout trapping
TASK ENDTASK Defines the main body of a task script
TITLEWINDOW Set caption bar text of conversational

window
WAIT Suspend execution until an event is trapped
WHILE ENDWHILE Looping of control

Class Independent Functions for Data Manipulation:
Function Name Value Returned
EDITBOX String of text in an edit box
TESTBUTTON Tells if a given button was pushed
ABS Absolute value of a numeric argument
ASC Integer for a given string
CHR String for a given integer
FIND Location of substring in a string
INT A long when passed a real
LEFT String of leftmost characters
LEN Number of characters in a string
MID Extracted substring
MOD Remainder for two integers
RIGHT String of rightmost characters
STR ASCII string given a numeric argument
SYS ERROR Error number of last run-time error
NUM Tells if parameter is numeric
VAL Numeric value of input string

SELECT_ALL_OBJECTS
DESELECT_ALL
DESELECT
SELECT_OPENED
SEND_TO_MAILROOM
SET_PASSWORD?
SET_USER_TIME_ZONE
SHARE
SHOW_DOS_PATH
SHOW_LINKS
SHOW_OWN_LINKS
OPENPARENT
STRAIGHTEN_UP
THROW_AWAY
TRANSFERMAIL

Class Dependent Commands for the
HPSHAPE Sample Application

This is the unique set of commands for the HPSHAPE sample program discussed
in the text. The commands correspond to the items on HPSHAPE’s menus. Notice
that there is some overlap with the Office window’s command set.

Command Name Description
CLEAR Clear the object’s window
CLOSE Close the currently active window
MAXIMIZE Increase the current window’s size
RESTORE Return a window to its default size
ELLIPSE Display an ellipse
RECTANGLE Display a rectangle
STAR Display a star
TRIANGLE Display a triangle

NOVEMBER 1989

MICROSOFT
SYSTEMS
JOURNAL

WinMain
| Shaf

ShapesSetupDC

report needs to be updated when
it is reopened. When the editor
starts again, NewWave can
automatically restart the
spreadsheet in the background
to rerender the linked data.

If the editor were using
conventional DDE, it would
have to implement its own list of
the server applications to which
it was linked as well as the type
of data passed over each of the
links. NewWave removes this
burden from individual applica-
tions by providing it as an
environmental service.

Another interprocess com-
munication service unique to
NewWave is the snapshot. A
snapshot is a special type of
object used to reduce the time
and memory overhead required
for communication views
between two objects. Usually
when a destination object
requests the rendering of a fresh
view or more data from a source
object, the entire source object
must be loaded and run. This
could mean loading an entire
spreadsheet application and a
large worksheet just to access
three numbers somewhere in the
worksheet. NewWave enables
you to provide a small snapshot
object that can render only a
particular linked view. If a snap-
shot is present when a destina-
tion object requests the
rerendering of a view, New-
Wave will reroute the request,
instead of the full application, to
the destination object.

A snapshot is implemented as
a small DLL with an associated
data file. It loads faster and
requires less memory because it
is a DLL and not a full process.
A snapshot doesn’t have to con-
tain the user interface or any
other code beyond what is
required to render that one view.
Conventional DDE, on the other
hand, would require both com-
plete applications to be present
in memory in order to pass the
new data.

12

Figure 20:

HAS_METHOD
ether a metl

HP SHAPE,
establish a

, Agent) .

link will be broken. Under
NewWave, a systemwide data-
base in the OMF records a list of
the links among all applications.
As soon as a link is created, it is
recorded in the database. When
the NewWave programs are
closed, the link persists and will
resume operation when the pro-
grams are restarted. (DDE
applications, on the other hand,
would have to reestablish the

link each time.)
For example, suppose you

have linked some numbers from
a spreadsheet to a report you are
producing with an editor. The
editor doesn’t have to be on
constantly, waiting to get
possible changes from the
spreadsheet. If the spreadsheet
does change, NewWave will
automatically set a flag in its link
database, indicating that the

NOVEMBER 1989

Figure 21: HPSHAPE Main Procedure
Another way in which New-

Wave extends Windows is in its
task script language, called
Agents. Agents are comparable
to extended BAT files that con-
trol Windows programs. Win-
dows Version 2.1 currently has
no built-in control script facility
of this kind. Although under
Windows it is possible to write
journaling programs that record
and play back series of key-
strokes and mouse movements,
the NewWave Agents function
at a cleaner and more funda-
mental level. Unlike journaled
keystrokes and mouse move-
ments (which are just recorded
user actions rather than com-
mands), Agents will work
regardless of how many applica-
tions are present in the Office
and where they are positioned.

The task language has many
standard statements, including
opening, closing, minimizing,
and maximizing applications,
that correspond to commands
shared by most NewWave pro-
grams. The most interesting
feature of the Agent language,
however, is its extensibility to
support individual applications.
Each NewWave program
defines its own command
language and implements a
parser to translate it. A full
NewWave application must
define statements in its com-
mand language to support all its
menu items and their param-
eters. The goal is for the Agent to
be able to do anything the user
can do directly. See the sidebar
“NewWave Command and
Function Summary,” which has
some commands from the Agent
task language.

An Agent can control indi-
vidual applications by commu-
nicating with them directly in
their own language of com-
mands. As a result, NewWave
applications no longer need the
extra code necessary to support
their own nonstandard internal
macro languages. Users can

13ShapeWndProc
Main procedure to handle all messages sent to HPSHAPE

COPYRIGHT HEWLETT-PACKARD COMPANY 1987, 1988

long FAR PASCAL ShapeWndProc(hWnd, message, wParam, IParam)
HWND hWnd;
unsigned message;
WORD wParam;
LONG IParam;

{
APIRTNTYPE applRtn; /* Used as a return value */
APICMDSTRUCT extCmd; /* The external command structure for API */
INTCMDSTRUCT intCmd; /* The internal command structure for API */

/* Function called for windows that are created with */
/* NW_CreateWindow to specially handle some messages */

if(NWJMessageFilter(hWnd, message, wParam, IParam,
(LONG FAR *) &applRtn))

{
return (applRtn);
}

/* Is API to intercept messages or has an API menu item been */
/* selected such as the help or the task? */

if(APIIntercept On(gAPIModeFlags) | I APIHaveMenu (message, wParam))
{

/* Is this a message for the API - may set certain flags? */
APIUserAct ioninterface(ghAPI, hWnd, (LPAP IUNSIGNED)Smessage,

wParam, IParam, API_NO_MODE);
}

applRtn = (APIERRTYPE) OL;
/* Still a command to be handled? Or did APIUserAct take it? */
if(APIHaveMessage (message))

{
intCmd wCmd = API_NO_CMD;

/* Are you currently playing back a message or recorded task? */
if (APIPlaybackMsg(message))

/* Translate to the internal format of the application */
TranslateToInternalProcessor(message, wParam, IParam,

&intCmd);
else

/* You are in record mode or a user interactive command */
Actionprocessor(hWnd, message, wParam, IParam, SintCmd,

&applRtn);

/* Is there a command created in the action processor
that needs to be executed? */

if(APIHaveCommand(intCmd.wCmd))
{

gapplErr - API_NO_ERR;

/* Are you in a CBT? */
if(APIMonitorOn(gAPIModeFlags))

{
/* Set to external language and pass the external

form of the command to the Agent */

TranslateToExternalProcessor(iintCmd,&extCmd);
APICommandlnterface(ghAPI, (LPAP ICMDSTRUCT)&extCmd,

API_NO_MODE);
/* The internal command must be canceled if the */

APICommandlnterface or APIClgCommandlnterface
has nullified the command */

if (extCmd.wCmd == API_NO__CMD)
intCmd.wCmd = API_NO_CMD;

}

/* Has the command been formed and executed? */
if(APIHaveCommand(intCmd.wCmd))

NOVEMBER 1989

MICROSOFT
SYSTEMS
JOURNAL

/* Perforin the command */
CommandProcessor(hWnd, message, wParam, IParam, &intCmd,

&applRtn);

/* Is a command being played back or being recorded? */
if(APIPlaybackOn(gAPIModeFlags) ||

APIRecordOn (gAPIModeFlags))

{
if(APIRecordOn(gAPIModeFlags))

{
/* Translate to ext lang and tell Agent that

command is complete and ready for next
command. */

TranslateToExternalProcessor (&intCmd, SextCmd);
APIRecordlnterface (ghAPI, (LPAPICMDSTRUCT)SextCmd,

API_NO_MODE);

}
/* Return control to the user */

APIReturnlnterface (ghAPI, gapplErr, API_NO_MODE);

}

} /* Endlf of APIHaveCommand */

} /* Endlf of APIHaveMessage */

return(applRtn);

} /* End of ShapeWndProc */

Figure 21
control all their NewWave
applications with a single task
language.

Agent scripts can be gener-
ated by capturing a series of user
commands (see Figures 12 and
13) or by creating them directly
with an ordinary text editor. The
language supports control struc-
tures such as loops, branching,
and procedures; it also supports
integer, float, and string vari-
ables. For performance, the
scripts are compiled into a
binary form before being run.

In the future, a built-in
scheduling system will allow
Agents to perform tasks at
specified times, such as a single
time or regularly every day or
week (see Figure 14). An Agent
could be told to wait for a trigger
event before it starts running.
For example, the receipt of a
piece of E-mail could trigger the
data being placed into a report.

Figure 15 shows a simple
Agent task script. Note that
because this article was written
before the release version of
NewWave was ready, the
PASTE and CLOSE commands
had to be used in intermediate
pcode form.

NewWave also adds to Win-
dows with its user support.
NewWave includes prewritten
CBT, Help, and Native Lan-
guage Support (NLS) systems.
NewWave is in a unique
position to offer first-rate Help
and CBT services because of the
similarity of its Help, CBT, and
Agent macro facilities. All three
systems are concerned with
monitoring and controlling the
execution of individual appli-
cations. In fact, the CBT lessons
are written in an extended form
of the Agent macro language. As
you have seen, all user actions
must pass through a NewWave
application’s Action Processor
before being translated into
commands that are executed by
its Command Processor. The
CBT system can watch and

14

Cmd
COPYRIGHT

int Cmd,(hWnd,
pRtn)

hWnd;HWND

LONG
PINTCMDSTRUCT
LONG

PAINTSTRUCT

PAINT:
(hWnd, (LPPAINTSTRUCT)&ps);
(hWnd, (LPPAINTSTRUCT)&ps);
(hWnd, (LPPAINTSTRUCT)&ps);

COMMAND

IDDCLOSE)
id = API_CLOSE_WINDOW_

Something was selected
tCmd->wCmd = NEW_SHAPE;

The window i
se WM CLOSE:

WINDOW CDCMD;

NOVEMBER 1989

Figure 22
modify this traffic of commands
to control the user’s interaction
with the system. The CBT can,
for example, intercept, recog-
nize, and point out correct and
incorrect user responses during
a lesson. NewWave provides
tools for creating CBT and Help
documents. Its built-in CBT
animation development system,
shown in Figure 16, helps devel-
opers design documentation and
Help files at the same time they
are writing the program.

Conventional CBT systems
often attempt to simulate the
behavior of specific parts of the
application. Rather than adding
new simulation code, New-
Wave CBT simply uses the
application itself by sending its
commands directly to the Com-
mand Processor.

Converting Applications
NewWave has built-in

support to help convert an
application to other languages
and customs. First, a single
generic version of the program
is written. Later, nontechnical
translation workers can use the
tools NewWave provides to
adapt the local character
handling (see Figure 17) and
customs support without
changing any code.

In order to see how NewWave
capabilities can be added to an
existing Windows application,
we will look at portions of the
code for a Shapes program that
comes with the Windows SDK.
The NewWave version is called
HPShape. Shapes does only one
thing: it draws one of four geo-
metric figures selected from its
menu—a triangle, an ellipse, a
rectangle, or a star. HPShape has
been made into a typical source
object that projects its visual
view into a destination object.

The NewWave SDK includes
a second program called
HPLayout as a sample destina-
tion object. To nest a visual view
of HPShape in HPLayout, mark

/* Selection from system menu or minimize/maximize */
case WM_SYSCOMMAND:

switch (wParam)
{
case SC-MINIMIZE:

intCmd->wCmd « API_MINIMIZE__WINDOW_CDCMD;
break;

case SC_MAXIMIZE:
intCmd->wCmd « API_MAXIMIZE_WINDOW_CDCMD;
break;

/* Request for saving previous coordinates */
case SC—RESTORE:

intCmd->wCmd = API_RESTORE_WINDOW_CDCMD;
break;

default:
/* Let windows handle it */
*pRtn « DefWindowProc(hWnd, message, wParam,

IParam);
break;

} /* End of case WM_SYSCOMMAND */
break;

case API_INTERROGATE_MSG:

/* The message has come via the API */
*pRtn = InterrogateFromAPI(wParam, IParam);
break;

case API_SET_MODE_FLAGS_MSG:
if (wParam == API_SET_MODE_ON_FLAG)
gAPIModeFlags = gAPIModeFlags | IParam;

else
gAPIModeFlags = gAPIModeFlags & IParam;

break;

case WM_OMF:

/* The message has come via the OMF */
*pRtn = MessageFromOMF(hWnd, wParam, IParam);
break;

default:
*pRtn = DefWindowProc(hWnd, message, wParam, IParam);
break;

}
} /* End of ActionProcessor */

off an area inside the HPLayout
window with the mouse. The
nested area is shown In reverse
(white foreground on a black
background). To project the
HPShape view into this small
area, drag HPShape’s icon over
it and drop it in. If you want to
manipulate the nested HPShape
object, double click on the
nes t ed area to b r ing up
HPShape’s main window.
Figure 18 shows the compound
document, SDK NW Layout
Demo, with its two nested chil-
dren open. The areas where they
normally appear in the docu-

AN AGENT CAN CONTROL
INDIVIDUAL APPLICATIONS
BY SPEAKING TO THEM IN
THEIR OWN LANGUAGE OF

COMMANDS. AGENT
SCRIPTS ARE CREATED

USING A TEXT EDITOR OR BY
CAPTURING USER

COMMANDS.

NOVEMBER 1989

MICROSOFT
SYSTEMS
JOURNAL

Figure 23:

, 1988COPYRIGHT HEWLETT-PACKARD

(hWnd,
pRtn)

hWnd;HWND

LONG IParam;
PINTCMDSTRUCT intCmd;
LONG *pRtn;

hMenu;

API_MINIMIZE_WINDOW

Restore(hWnd);

.rcRect);
NW

WINDOW

NW

WINDOW
NW

WINDOW

d, (LPRECT)
SW HIDE);

eady(ghAP I, AP I_NO_MODE);
>_Closing(ghOMF, (LPRECT)

NEW

GetMenu(hWnd);

’_UNCHECKED);CheckMenuItem(hMenu, gnShape

internal.ICmd) != SHAPE_NONE)
, gnShape, MF_CHECKED);

((gnShape

InvalidateRect (hWnd, (LPRECT)NULL, TRUE);
UpdateWindow(hWnd); /* Force repaint for

NEW_SHAPE

ment are gray. The object called
Nestable HP Text is another
simple source object that comes
with the NewWave SDK. It
projects a visual view of text.

Getting NewWave’s addi-
tional functionality comes at the
price of a fair amount of extra
code. Whereas the simple
Shapes WinApp weighs in with
only 7Kb of C source code, the
HPShape and HPLayout appli-
cations require 55Kb and 157Kb
of C source code, respectively.
Of course, that added code gives
you a help system, a program-
ming language, and data and
visual linking capability. The
amount of added NewWave
code is also relatively fixed in
size. For a normal sized program
it will be a smaller percentage of
the total code.

Figures 19 and 20 are calltrees
for the programs produced with
Microsoft CALLTREE.EXE
utility. Calltree listings show the
hierarchy of function calls for a
C program. The calls made from
a function are indented beneath
it. Figure 19 shows the structure
of the pre-NewWave Shapes;
Figure 20 shows the HPShape
NewWave program. The full
source code for three HPShape
functions (ShapeWndProc,
Ac t ionProces so r , and
CommandProcessor) is shown
in Figures 21, 22, and 23.

The data file referred to in the
figures is used to record the spe-
cific shape that was being dis-
played in the HPShape window.
This means that even after the
NewWave application is closed,
its state persists and when it is
reopened this state is restored.

As with all Windows and
Presentation Manager pro-
grams, a NewWave program is
essentially a large message pro-
cessor. The program spends its
life responding to the spectrum
of messages that enter its main
window procedure. It separates
the messages into general cate-
gories and passes them to more

16

NOVEMBER 1989

Figure 23
specialized handlers. Figure 24
contains the messages recog-
nized by the pre-NewWave
Shapes; Figure 25 contains the
considerably broader list to
which HPShape must respond.

Conventional
Applications

In order for applications to
exploit NewWave fully, they
must be specifically written to
interact with its new interfaces.
But while these fully New-
Wave-capable applications are
being written it is important for
NewWave to be able to interact
with any conventional MS-DOS
and Windows programs such as
Lotus® 1-2-3®. NewWave pro-
vides severa l me thods for
encapsulating these existing
applications to make them more
functional in NewWave.

At its lowest level, NewWave
allows existing programs to be
run from a menu. This requires
no encapsulation at all. Win-
dows applications as well as
character mode or graphic MS-
DOS programs that take over the
whole screen can be run this
way. The user can context
switch between the program and
the rest of NewWave and use the
c l ipboard to cut and paste
between it and other appli-
ca t ions . In tegra t ing a new
program to operate at this level
takes only a few minutes.

Moving up the integration
scale requires the encapsulation
of the existing program into a
shell created by an interactive
installation tool provided by
NewWave. The lowest level of
encapsulation takes about an
hour. It allows data files created
by the program to be represented
as an icon in the NewWave
Office. These objects can be
manipulated in most of the same
ways that a full NewWave appli-
cation can. They can be opened
with a double click or moved,
copied, filed, mailed, or dis-
carded with the drag-and-drop

17
/* object? Set the new_data flag for all views of */
/* shapes */

if (OMF_SetNewData(ghOMF, 0))

/* Notify the destinations */
if (!OMF_AnnounceNewData(ghOMF))

NoteError();
1

break;

default :
NoteError();
break;

}

} /* End of CommandProcessor */

Figure 24: Messages Recognized Before NewWave Enhancements

Conventional Windows applications deal with two primary types of messages.

Messages resulting from user actions

These result from mouse clicks, mouse movements, menu selections, or
keystrokes. They are acted on immediately.

WM_COMMAND Results from menu selection
WM_SYSCOMMAND User selected something from system

menu or minimize/maximize

MS Windows housekeeping messages

WM_CREATE
WM.PAINT
WM_ERASEBKGND
WMJDESTROY

Sent when CreateWindow is called
Sent to update the screen
Sent when window background needs clearing
Terminate the message loop

technique. The disadvantages
are that they allow neither data
nor visual links to other objects
nor can they use the full Agent
task language, help, or training
systems.

The highest level of encap-
sulation requires considerable
programming, but doing that
programming is significantly
easier than completely rewriting
the application as a native New-
Wave application. The new
code primarily adds support for
data and visual links. It consists
of a browser program that
understands the format of the
application’s data and can talk to
the NewWave OMF. For exam-
ple, when a destination object
sends a message asking an
encapsulated source object to
display a view of itself in a given

rectangle, the browser reads the
object’s data file and displays
the data to the screen. If it is
necessary to edit the data, the
browser can invoke the neces-
sary application to do so.

A full NewWave application
goes fur ther by prov id ing
complete support for the Agent
task language, context-sensitive
help, NewWave user interface,
and Computer-Based Training.

Machine Requirements
The minimum hardware that

HP recommends for NewWave
users is a 286 PC/AT® or 100
percent compatible, 3Mb of
LIM 4.0 EMS memory, a 20Mb
hard disk, and an EGA display (a
VGA is significantly better).
Developers should increase this
to 4Mb of EMS memory. A

NOVEMBER 1989

MICROSOFT
SYSTEMS
JOURNAL

Figure 25: Messages Recognized After NewWave Enhancements

NewWave applications must process five types of messages.

Messages resulting from user actions
These messages result from mouse clicks, mouse movements,
menu selections, or keystrokes. They are not acted on directly,
but rather are translated by the Action Processor into
commands for the Command Processor in the application’s own
task language. (See message type 5.)

WM_COMMAND Results from menu selections.
WM SYSCOMMAND User selected something from

system menu or minimize/
maximize.

OMFMessages
These messages come from the OMF as WM_OMF messages.
They are used to communicate either with the OMF itself or
with other objects. They each correspond to an OMF method
that this application implements. A method is the code that is
executed in response to a given message: for example, the code
needed to create, open, or terminate this object.

CREATE OMF Respond by reading data file to
remember the "persisting”
state of the object when it was
last closed. Was it a triangle, and
so on.

WARM START Indicates that the receiving
object was shut down in a
consistent state the last time it
was run. The object can treat as
valid any context or state
data that was saved at shutdown.

OPEN Respond by reading properties to
find the last size and position of
window. Move the window there.

HASMETHOD Respond to say if a particular
OMF "method” is supported by
HPShape.

INIT_VIEW Respond by setting up a view
specification for the data to be
displayed in a requesting object.

GET SIZE Respond by saying what size
HPShape needs to allow it to
display itself as a view in a
destination object.

DISPLAY_VIEW Paints the visual view from
HPShape in the DC specified by a
destination object.

COPY SELF Allows this object to be copied
when it iscontained in another
object.

TERMINATE Respond by saving current shape
in data file.

DIE PLEASE Tells this object to terminate itself.
WINDOWTOTOP Tells this object to bring its

window to the front.

NewWave AH messages
User request
Agent request
Interrogate messages
APIINTERROGATEMSG
A request for information from the application.
APISETMODEFLAGSMSG
Used to change mode the application is in, such as Playback,
Record, and Monitor.

MSWindowsHousekeepingmessages
WMPAINT Sent to update the screen.
WM_CLOSE User closing window.

InternalMessages for the CommandProcessor
These messages originate inside the application. They may
result from a translated user action or from an Agent script
being played back. Each corresponds to a command in the
application’s task language.

API MINIMIZE WINDOW CDCMD
Requests application to iconize itself
API MAXIMIZE WINDOW_CDCMD
Requests application to grow to take up the whole screen.
API RESTORE WINDOW_CDCMD
Requests application to return its window to the previous
size.
APICLOSEWINDOWCDCMD
Requests application to close its main window.
NEW SHAPE Rerender the current shape.

cost of increased code, although
that cost can be lessened by
choosing the level of encapsula-
tion your program requires.
Windows programmers who are
interested in extending and
enhancing their Windows pro-
grams must give serious consid-
eration to programming for the
NewWave environment.

40Mb or larger hard disk is
recommended. Developers
will also need Mic roso f t
Windows/286™ Version 2.11,
and Microsoft C 5.1 or higher.
As with most Windows or Pre-
sentation Manager work, a fast
386 machine significantly
increases productivity.

NewWave enhancements to
Windows programs come at the

'For ease of reading, "MS-DOS" refers to the Microsoft MS-DOS
operating system. "MS-DOS" refers only to this Microsoft product and
is not intended to refer to such products generally.
2For ease of reading, "Windows" refers to the Microsoft Windows
graphical environment. "Windows" refers only to this Microsoft product
and is not intended to refer to such products generally.

NOVEMBER 1989

Emulating the UNIX® RS-232
General Serial I/O Interface
Under DOS

19

Michael J. Chase

ne popular means of transferring infer-
mation between DOS1 or UNIX® applications and
terminals or control devices is the use of RS-232
serial communication. This article focuses on
writing applications that rely on RS-232 serial

communication under both DOS and UNIX. We will explore the
generalized serial I/O interface provided under UNIX and a device
driver that emulates it under DOS.

UNIX programmers have a general interface for asynchronous
serial devices that is independent of hardware; it has many useful
features and, once understood, is very easy to work with. Program-
mers working in the DOS environment, however, usually can’t use
the C0M1 or COM2 serial device interfaces because they are not
interrupt driven and do not support buffering or XON/XOFF hand-
shaking. Third-party communications libraries are often called upon
to help, but most require the C programmer to learn at least 20
function calls to a proprietary interface—20 more than most people
would prefer to have to learn. Moreover, third-party communication
code usually will not port to UNIX-based systems or to another
vendor’s DOS communication libraries.

Documentation for the generalized UNIX serial device seems
incredibly terse and hard to read if you are not familiar with the many
details surrounding asynchronous communications. After some
explanation, however, the serial device interface becomes easy and
convenient to use. Usable features (buffering, XON/XOFF hand-
shaking, watchdog timers, parity control, exception handling, line
disciplines, and so on) of this general interface are presented so that
portable device control software can be written for general and
embedded applications under both UNIX and DOS. Trade-offs in
communications software design (buffer sizes, communication
attributes, error recovery, and so on) are also discussed.

Communication Device Drivers
A major goal of all device drivers is to provide a logical software

interface for applications that isolates them from physical hardware.
The physical hardware can differ; however, the logical software
interface to the hardware (device) remains the same. This is true for
block-oriented devices (disk interfaces) as well as character-
oriented devices (serial port interfaces).

Michael Chase is a principal of the Boulder Software Group, which provides
contract programming services and instruction on C and UNIX to AT&T, DEC,

and IBM. He is also a faculty member in the Univ, of Colo. M.S.
Telecommunications program.

o QCUMENTATION FOR

THE GENERALIZED UNIX

SERIAL DEVICE IS

INCREDIBLY TERSE AND

HARD TO READ

IF YOU ARE NOT FAMILIAR

WITH THE MANY

DETAILS SURROUNDING

ASYNCHRONOUS

COMMUNICATIONS. AFTER

SOME EXPLANATION, THE

SERIAL DEVICE INTERFACE

BECOMES EASY TO USE.

NOVEMBER 1989

MICROSOFT
SYSTEMS
JOURNAL

Serial Communications Terms

20 Asynchronous Communications Character-at-a-time
transmission. Characters are randomly sent one at a time, far apart
or close together. They are separated by start and stop bits. (See
Framing.)

Baud Symbols per second. Each symbol usually contains analog
information for 2As:n: bits (n = 0, 1,2, 3, ...). For example, a
symbol that has four different voltage levels (n = 2) contains
information for 2 bits; thus a baud rate of 600 will yield an effective
bit rate of 1200 bps.

Blocked Process If a program (process) is waiting for an I/O
completion, it may be put to sleep; that is, marked as no longer
eligible to run. The process is unblocked (awakened) when the
I/O request is complete; it is then eligible to run.

BPS Number of binary transitions per second. (See Baud.)

Break BREAK asserts the SPACE condition on the serial line for
approximately 0.25 to 0.30 seconds. It may cause a framing or
overrun error to occur. It is typically used to reset the serial link to
some known state.

DCD Data Carrier Detect. An electrical signal stating the presence
or absence of a modem carrier. The DCD is used to indicate when
two or more modems have established a connection.

DTE/DCTE Data terminal equipment. Usually a terminal device
capable of generating or displaying information. Data circuit
terminating equipment. Usually a device capable of transmitting
or receiving data over a chosen medium. Examples are a modem
and a line driver.

DTR/DSR Data Terminal Ready/Data Set Ready. A DTE advises
that it is ready to converse by raising DTR. The DCTE advises that
it is ready to converse by raising DSR. DTR and/or DSR are
usually active for the duration of a conversation.

Flow Control A method or protocol for governing the starting
and stopping of transmission. It is used so that resources can be
managed to accommodate incoming data; typically it advises a
sending entity that a receiving buffer is nearly full (stop trans-
mitting) or nearly empty (start transmitting).

Framing For asynchronous character transmission, framing
identifies the meaning of bits that constitute a character. The
number of start bits (1; SR), information bits (5, 6, 7, or 8; D0..D7),
optional parity bit (0, 1; P), and stop bit(s) (1.0, 1.5, 2.0; SP) are
identified.
Example:
I SR I DO I DI I D2 I D3 I D4 I D5 I D6 I D7 I P I SP I

Hardware Handshaking Flow control that is managed at the
hardware level. The UART waits for permission to send
characters, which is granted through the RS-232 RTS/CTS
signals.

Level 1 Direct I/O The C programmer has the choice of two levels
of I/O: level 1 or level 2. Level 1 I/O sends and receives characters
directly from the operating system (the operating system may
buffer characters).

Level 2 Stream I/O The C programmer has the choice of two
levels of I/O, level 1 or level 2. Level 2 I/O sends and receives
characters to and from stream buffers (typically 512 bytes long)
maintained by the C standard library. Level 2 is written as a
function of level 1. When write buffers become full, they are

flushed out to the operating system; when read buffers become
empty, more characters are requested from the operating system.

Line Discipline Conversion rules chosen for the c_lflag in the
termio structure. A mapping or filter strategy for transferring
characters from the raw input queue to the canonical input queue.

Mark An electrical signal that denotes a logical binary 1. Under
RS-232, typically -3 to -25 VDC.

Overrun When too many data bits are received between the start
and stop bit, an overrun condition has occurred.

Parity A bit designated for error-detection purposes. There are two
basic types of parity—even and odd. If the parity bit is designated
as odd (or even), its job is to take a value that makes the total
number of Is in an asynchronous character transmission odd (or
even); for example, 00010101P; P = 0 odd parity (P = 1 even
parity). Parity errors detect some, but not all, types of transmission
errors.

Ring Buffering A circular buffer or queue of finite size that has
no physical beginning or end. The logical beginning and logical
end are typically tracked with pointers. The next character put in
the queue is at the logical end of the buffer; the next character taken
out of the queue is at the logical beginning. If the buffer is full and
a character is put in the queue, the oldest character in the queue may
be overwritten. A ring buffer of size N will always contain at most
the last N - 1 characters in the queue.

RS-232 Recommended Standard 232. RS-232 is administered by
the Electronic Industries Association (ElA). Electrical character-
istics for transmission of information and signaling information is
specified. RS-232 is also known as CCITT V.24. Physical
characteristics of a connector are also specified; for example, the
common DB-25.

RTS/CTS Request to Send/Clear To Send. Hardware signals used
in flow control. A DTE can request permission to send characters
by raising RTS and be granted permission with the activation of
CTS by the DCTE.

SDLC Synchronous Data Link Communicat ions. (See
Synchronous Communications.)

Software Handshaking Flow control that is managed at the
software level. Software typically sends an XOFF (ASCII DC3;
13H) character to request the suspension of character transmission
(receive buffers are nearly full) and an XON (ASCII DC1; 11H)
character to resume a suspended transmission (receive buffers are
nearly empty).

Space An electrical signal that denotes a logical binary 0. Under
RS-232, typically +3 to +25 VDC.

Synchronous Communications Block-at-a-t ime
transmission. Groups of characters are sent in blocks of bits. There
are no start or stop bits to separate characters; there are, however,
bit patterns (flags) that separate blocks of bits.

UART Universal Asynchronous Receiver Transmitter. A
hardware device whose primary function is to perform serial-to-
parallel conversion of electrical signals.

XON/XOFF Characters that have been chosen for software flow
control. An entity receiving an XON is advised to resume (begin)
transmission. An entity receiving an XOFF is advised to suspend
(stop) transmission. (See Software Handshaking.)

NOVEMBER 1989

You will also need to invest a
great deal of time in supporting,
updating, and maintaining the
software—in other words, you
will become your own technical
support staff.

Third-Party Libraries
Third-party add-on commu-

nication libraries may help you
write serial I/O programs by
providing a C language inter-
face for controlling device attri-
butes. Your C code, however,
will be married to these typically
nongeneral interfaces under
DOS. Therefore, you must
weigh both the advantages and
disadvantages of this scheme.

An advantage of third-party
libraries is their highly granular
control over speed, parity, stop
bits, XON/XOFF, buffer man-
agement, and so on. Another
advantage is not having to install
a device driver, since device
drivers have to be loaded when a
system is booted and then
remain part of the operating sys-
tem. I/O functions loaded with
your programs, however, are not
resident in the operating system,
do not consume any space when
your program exits, and do not
incur operating system over-
head to pass i n fo rma t ion
through the file system.

One disadvantage is that the
interface to a third-party library
is not through the file system;
another is that calls to fopen,
fread, fscanf, fwrite, fprintf, and
fclose will not work. You must
devote the time to learn a new set
of interface functions supported
by a given vendor. Some inter-
faces are unnecessarily com-
plex; one commercial vendor,
for example, boasts more than
125 serial communication func-
tion calls. Another disadvantage
is that simple command line (or
batch file/shell script) redirec-
tion is not supported. For
example, under DOS the simple
command line
C> dir > \device\tty01

will not work. Further, the
logical interface is vendor spe-
cific; C code that is portable
between DOS and UNIX is
nearly impossible to write.
Finally, some third-party librar-
ies are designed as terminate-
and-stay resident (TSR) and
consume memory.

If you only develop for DOS
and portability is not an issue, or
if you only need a serial device
interface for DOS that emulates
the widely accepted UNIX
serial interface, the advantages
probably outweigh the disad-
vantages. In that case, and with
the bridging of the UNIX and
DOS worlds, this option
deserves consideration.

Emulating UNIX Serial I/O
A UNIX-compatible serial

device driver under DOS pro-
vides a number of useful
advantages. First, it gives you
sufficient control over speed,
parity, stop bits, XON/XOFF,
buffer management, and so on.
Second, C code that controls
serial I/O is portable between
DOS and UNIX. UNIX pro-
grammers need not learn a new
serial I/O interface for DOS and
vice versa. Third, the interface is
through familiar file system
calls (such as fopen and fprintf)
so command line (and batch/
shell) redirection is possible. In
fact, the interface is so general
that it allows any language-
supporting file I/O (C, Assem-
bler, Pascal, Clipper, and so on)
to use the serial device. Fourth,
the controlling interface is via
one standard function call,
namely IOCTL. It is the same
under both UNIX and DOS.
Fifth, standard DOS-critical
error handlers can be used to trap
run-time exceptions.

Emulation, however, presents
its own set of problems. Since
device drivers are only loaded
once, at boot time, and DOS sup-
ports no explicit resource
management, an existing appli-

Both UNIX and DOS provide
block and character device dri-
vers that allow C programs to
read and write bytes by using
standard library calls through
the file system. Familiar I/O
function calls such as open,
read, write, and close (level 1
functions) or stream-buffered
functions such as fopen, fread,
fscanf, fwrite, fprintf, and fclose
(level 2 functions available in
the standard library) can be used
to communicate with a file or a
serial device. These functions
afford programmers writing
serial I/O software in UNIX and
DOS portability across many
hardware platforms.

There is one problem though.
The default asynchronous
device driver shipped with DOS
is not very powerful because it
does not allow you to change
speed, parity, buffer control,
handshaking, and so on, inde-
pendent of the hardware. To
control a serial device from a C
program, calls to the BIOS must
be made—a serious impediment
to portability. Fortunately there
are three viable methods you can
use to write serial I/O software
for the DOS environment: you
can build your own communi-
cations software, use linkable
communications libraries pro-
vided by a third party, or use a
device driver capable of emulat-
ing the popular UNIX serial I/O
interface under DOS.

Building Software
Building a communications

functions library from scratch
has certain advantages. It gives
you control over exactly what
you need, it helps you learn
about communication port hard-
ware, and it gives you ownership
of source code.

By and large, though, you will
be reinventing the wheel. You
will need a hardware debugger
and/or a logic analyzer to catch
the most subtle bugs, especially
those found in interrupt logic.

21

NOVEMBER 1989

MICROSOFT
SYSTEMS
JOURNAL

Figure 1: Interface Specification for ioctl() (Add-on communication func-
tion libraries can also suffer the
same dilemma.)

The device driver always
consumes memory, even though
it may not be used. The sample
DOS serial device driver accom-
panying this article emulates the
UNIX driver by consuming
almost 8Kb, excluding buffers.
(Code for the device driver may
be downloaded from any MSJ
bulletin board—Ed.) Further-
more, applications depending
on the driver cannot load it
before executing, although they
can test for its absence and
recover. Microsoft® documents
no formal mechanism (that is, a
DOS function call) for dynamic
device driver loading, except for
its mouse driver.

Finally, since DOS is not
reentrant, and must be entered
to gain access to the device dri-
ver, buffers cannot be resized at
run time. They must be sized at
boot time and remain fixed.

Of the three methods you can
use to write serial I/O software
in the DOS enviroment, the best
one is emulation of the UNIX
serial I/O device driver. It is the
most general solution for a given
need; which means it best meets
the goals of providing transport-
able code, a standard interface,
and minimization of the learn-
ing curve. The issues you will
need to address when devel-
oping serial I/O devices are
discussed next.

Blocking and
Nonblocking I/O

Normally when a function
call is made requesting infor-
mation from a block device (a
disk), the function call will
return only when the request is
satisfied or when an error
occurs. For example, the follow-
ing call to read will wait until 10
characters are transferred or an
error occurs:
if(read(fd, buffer, 10) !=10)

{

22 #include <termio.h>

int ioctl (fd, command, argument);
int fd;
int command;

union
{

int i_arg;
struct termio *s_arg;

} argument;

ioctl()
Returns 0 if successful in performing the requested command; returns -1 otherwise and
ermo is set to reflect the reason for the error. EBADF, ENOTTY, EINTR, EFAULT,
EINVAL, EIO, ENXIO and ENOLINK are possible values for ermo; see the include file
<ermo.h>.

fd
A valid file descriptor (DOS file handle) obtained from a successful call to open() or
fopen(). It must be possible to write to the file to set device attributes and it must be
possible to read from the file to get device attributes.

com maud
There are seven commands that tell the device driver how to respond. Note that the value
and type of the last parameter, argument, will depend on the command selected.

TCGETS
Get current attributes from the device (TCGETA on some UNIX systems),
argument.s_arg points to the structure that will receive the existing attributes.

TCSETS
Immediately set the passed attributes in the device (TCSETA on some UNIX systems),
argument.s_arg points to the structure that contains the attributes to be set.

TCSETAW
Set passed attributes after the output buffer has drained, argument.s_arg points to the
structure that contains the attributes.

TCSETAF
Wait for the output to drain, flush the input queue, then set the new attributes,
argument.s_arg points to the structure that contains the attributes.

TCSBRK
Send a break sequence for 250 milliseconds, argument.i_arg must be 0.

TCXONC
Start (XON) or stop (XOFF) the transmission of output from the device. If
argument.i_arg is 0, output is suspended; if 1, suspended output is restarted.

TCELSH
Flushes the input and/or output queues. If argument.i_arg is 0, flush the input queue; if
1, flush the output queue; if 2, flush both the input and output queues.

argument
The union argument contains one of two data types:
struct termio * s_arg

or
int i_arg

The type depends on the command being issued. s_arg is a pointer to a C structure that
will be used for setting or getting device attributes. i_arg is an integer.

cation (a TSR, for example)
could corrupt the device driver
by competing for the same
communication port hardware.

NOVEMBER 1989

Figure 2: Two Methods of Opening a Serial Device
#include <stdio.h>

#define SERIAL_DEVICE "/dev/ttyOl ”

static int fd_tty;
static FILE *fp_tty;

/* process the error */
}

If the read is from the disk, the
request is usually not satisfied
until the disk access is complete.
Under the DOS operating sys-
tem, the application program
waits for DOS to service the
request completely. Under a
preemptive multitasking system
such as UNIX, the program (or
process) is put to sleep (that is,
the program blocks) until the
request is satisfied; then it is
awakened (or unblocked) and is
eligible to run. Note that while
the process is asleep, the oper-
ating system can serve other
processes. DOS, however, is a
single-tasking system, so a
program must patiently block
until DOS returns control—
nothing else can run.

If you have a serial commun-
ications link with the same read
calling for 10 characters, and no
other characters are available,
your process will block under
both UNIX and DOS. If nothing
shows up, the DOS program
may block forever. The UNIX
program also blocks, but other
programs can run. Both DOS
and UNIX, however, can be
convinced not to block if
nothing is available. Several
issues related to blocking and
nonblocking I/O must be
addressed: The minimum
amount of time and/or number
of characters for which a read
request waits to be assembled
before being partly or fully satis-
fied; the number of m characters
(if available) with n requested
(m< ri), that should be picked up;
whether the request is free-form
and just asks for a completed
line (that is, whether all char-
acters are up to a ' \n' or some
other line delimiter); whether or
not line editing is available so
that mistakes can be corrected;
and how the EOF condition will
be detected and handled. These
issues are explored in later
examples; as it turns out, they

23
/* L E V E L 1 O P E N M E T H O D */

if((fd_tty = open(SERIAL_DEVICE, 2)) != -1)
{

/* fd_tty now a valid UNIX file descriptor */
/* fd_tty now a valid DOS file handle */

}
else
{

/* The device can’t be opened. */
}
טּ*****★**/ טּ טּ**★************** *****★★****************************/
/* L E V E L 2 F O P E N M E T H O D */

if((fp_tty = fopen(SERIAL_DEVICE, ”rwb”)) ?= NULL)
{

/* fp_tty now a valid stream pointer */
}
else
{

/* The device can't be opened. */
}

are all options that can be con-
figured through a general
interface.

Asynchronous Driver
There is one general interface

for controlling serial I/O para-
meters under UNIX — the
IOCTL system call. Its interface
specification is shown in Figure
1. If you have worked with DOS,
you know that there is a similar,
but not equivalent, DOS func-
tion call (44H) named IOCTL.
Unfortunately, there is no docu-
mented evidence that lets you
use IOCTL to control C0M1 or
COM2 attributes such as bps,
parity, and hardware hand-
shaking. (Note that the DOS
IOCTL call allows several oper-
ations to be performed other
than those discussed here,
especially on block devices.)
BIOS calls must be used.

Microsoft borrowed the
UNIX device driver philosophy
for DOS, but did not generalize
the DOS asynchronous serial
I/O device interface as they did
the disk drive interface. As a
consequence, you must use one
piece of serial hardware, the

8250 UART, mapped at a fixed
address through the BIOS.

To get around that, DOS
device drivers that use the gen-
eral UNIX serial I/O interface
are available; they replace the
COMI and COM2 drivers
provided with DOS. The UNIX
terminal interface serves as an
excellent model for DOS, as
have many other UNIX features
(such as the hierarchical file
system, the I/O subsystem,
redirection, pipes, and environ-
ment variables).

Before using the generalized
UNIX serial I/O interface, you
must know the following: the bit
rate, character data length,
parity, and stop bit(s) require-
ments for communications; the
scheme to be used to manage the
flow of information in both the
transmit and receive directions
(XON/XOFF, RTS/CTS, DTR/
DSR); how the device handles
exceptions such as loss of
modem carrier, a break signal,
or AC; the kind of input or output
post-processing, if any, that
needs to be done (for example,
CR->NL, NL->NL/CR, con-
vert cases, expand tabs);

NOVEMBER 1989

MICROSOFT
SYSTEMS
JOURNAL

Application C Code
(see the definition for BUFSIZ in
the include file <stdio.h>).
Writing or reading bytes to or
from a stream buffer saves the
overhead of making a context
switch to the operating system.
When the stream buffer
becomes full, its contents are
flushed out to the operating
system with a call to write.
©write() transfers bytes from the
stream buffer to internal
operating system buffers
(known as clists under UNIX) if
the destination is a character
device. Under DOS, fixed buffers
are most likely maintained by the
device driver itself. If the
destination is a block device,
write() transfers bytes from the
stream buffer to an operating
system buffer (known as the
buffer cache under UNIX).
©When the device is capable of
transmitting, a byte is
transferred from the appropriate
clist to a transmit register.
©Finally, the byte held in the
transmit register is shifted out
to the serial line designated for
transmission.
The following description also
applies to the freadf) call, with the
exception that the sequence is
reversed.
©Binary information is shifted
in from the serial line
designated for reception and is
held in a receive register.
©When the device has received
a byte, it is transferred from the
receive register to the
appropriate clist.
©read() transfers bytes from the
appropriate clist to a stream
buffer maintained by the C
standard library. Note that there
are two types of input queues
(clists)—the raw and canonical
input queues. The raw input
queue contains exactly what was
received. The canonical input
queue contains characters that
have been transferred from the
raw input queue and possibly
filtered per a selected line
discipline.
© fread() transfers bytes from a
stream buffer maintained by the
standard library to the buffer
provided by the user. When the
stream buffer becomes empty,
its contents are replenished by a
call to the operating system
function read().
O fread() returns to the
application program.

fo
pe

n

fc
lo

se

7

tre
ad

 '

fs
ee

k

Standard C Library
Stream buffers
maintained by the
C library 512
bytes

OS clists
maintained for
character devices.

OS Services Routines
OS buffer cache
maintained for
block devices and
named pipes.

Each device, block
or character, has
its own set of

OS File & I/O System
functions that
perform the logical
to physical
translation.

OS Device Drivers

Canonical
Input I
QueueTx

OutputRaw
Input [
Queue’

de
v_

op
en

de
v_

cl
os

e

>
de

v
re

ad
x

de
vw

ri
te

de
v

Is
ee

k

>
de

v_
io

ct
l

Device
Drivers
Block and
Character.

/d
ev

/tt
yO

!

Possible Use of
PC BIOS for
MS/PC-DOS
Environments.BIOS

UART

TX Register

RX Register
Serial Port Hardware
(character device(s))

OC—a—m]
Disk Hardware

(block device(s))

G
Physical Hardware

calls fwrite(). A call to write()
bypasses (2), the C standard
library stream buffers.
©fwrite() transfers bytes from
the user buffer to a stream
buffer maintained by the
standard library. Stream buffers
are usually 512 bytes in length

I/O Paths: The path a character
will take when an application writes
it to an output stream (or reads
from an input stream).
OThe application opens the
device with a call to fopen(). The
application then sets up a
buffer, count, and so on, and

Figure3

NOVEMBER 1989

Figure 4: Communicating with a Serial Device
whether DOS programs should
use binary or text mode when
communicating with a device
driver; and how parity, framing,
and overrun errors should be
detected and handled.

Getting Started
Just as you must open a disk

file (with open or fopen) to
modify it, you also must open a
serial device, so that it can be
written to, read from, or advised
of new operation attributes. You
can use either method shown in
Figure 2; both level 1 and level 2
file I/O functions are provided in
the standard C library. Note that
in the call to fopen, “rwb”
advises the I/O system not to
insert CR/LF translations within
the data and to pass the AZ (1aH)
character as binary data.

The advantages of level 1 are
that there is no buffering over-
head in the standard library and
that information specific to the
operating system such as lock-
ing and networking, can be com-
municated. Level 1 provides
more control for character-at-a-
time reading and writing. A
disadvantage of level 1 is that
only read and write are avail-
able for I/O. The process can re-
quire a costly context switch to
the operating system kernel for
each read or write function call.

Level 2 allows the use of
fprintf, fscanf, fgets, fputs, and
so on, for I/O. These are more
portable between different oper-
ating system environments .
Buffers can be flushed (reset) in
the standard library. Context
switching to the operating sys-
tem for I/O is only necessary
when output buffers are flushed
or when input buffers are re-
plenished, not for each call to
fread or fwrite.

A problem with level 2 is that
there may be too much buffering
overhead. The device, operating
system, and standard library
all maintain buffers. Further-
more, stream buffer overhead

25auto int in__int;
auto FILE *fp_tty;

/* Trivial request and response from the terminal */

/* Assumes fp_tty is opened in "rwb’’ mode */

do
{

fprintf(fp_tty, "\nHello Terminal. \nEnter an integer: ");

} while(fscanf(fp_tty, ’’%d’’, &in_int) != 1);

NCC

Output

attributes. As stated earlier, the
IOCTL function is used to get or
set device attributes passed in a
C structure. To use the IOCTL
function call, the device must be
opened with the open function,
and a valid file descriptor (a
DOS file hand le) must be
obtained. If the standard library
function fopen is used, the file
descriptor can be derived from
the file pointer with the fileno
macro found in stdio.h. One C
structure, termio, is used to set or
get at tr ibutes for all asyn-
chronous devices under UNIX;
it is found in the include file
termio.h. Members of the termio
structure contain information on
input modes, output modes,
control modes, line disciplines,
and an array of eight special
control characters. The termio
structure is shown in Figure 5.

Each flag in the termio struc-
ture is actually a collection of
several flags that produce a bit
pattern fitting into an unsigned
short. The flags have the effects
listed below.
cj f lag Instructs the device
how to react to received input.
Break, parity generation, parity

for character-at-a-time I/O is
more benef ic ia l for block
devices (disks) than character
devices (serial I/O ports). See
Figure 3 for more information
about I/O paths.

Despite the disadvantages of
using level 2 file I/O, it is the best
choice for the application dis-
cussed here because of the con-
venience provided by the printf
and scanf functions. Also, the
standard library can be con-
vinced that the stream buffer it
maintains for a file stream is of
length 1 with a call to setbuf.
Buffering overhead is reduced
to approximately that of level 1
I/O, and fflush need not be
cal led after each fwri te or
fprintf transaction.

Once a device has been
opened, it can immediately be
read from or written to. For now,
assume that either the device has
been initialized or its default
attributes will suffice. You can
therefore communicate with the
serial device, as in Figure 4.

Changing Parameters
Next, consider the mechan-

ism for changing serial device

NOVEMBER 19S9

MICROSOFT
SYSTEMS
JOURNAL

Figure 6: Possible Termio Flags_____________________1

The cjflag field describes the basic terminal input control.
IGNBRK Ignore break condition
BRKINT Signal interrupt on break
IGNPAR Ignore characters with parity errors
PARMRK Mark parity errors
INPCK Enable input parity check
ISTRIP Strip character
INLCR Map NL to CR on input
IGNCR Ignore CR
ICRNL Map CR to NL on input
IUCLC Map uppercase to lowercase on input
IXON Enable START/STOP output control
IXANY Enable any character to restart output
IXOFF Enable START/STOP input control

The c.oflag field specifies the system's treatment of output.
OPOST Post-process output
OLCUC Map lowercase to uppercase on output
ONLCR Map NL to CR-NL on output
OCRNL Map CR to NL on output
ONOCR No CR output at column 0
ONLRET NL performs CR function
OFILL Use fill characters for delay
OFDEL Fill character is DEL, else NUL

NLDLY Select New-Line delays:
NLO New-Line character type 0 (no delay)
NL1 New-Line character type 1 (0.10 second delay)

CRDLY Select Carriage-Return delays:
CRO Carriage-Return delay type 0 (no delay)
CR1 Carriage-Return delay type 1 (column position

dependent)
CR2 , Carriage-Return delay type 2 (0.10 second delay)
CR3 Carriage-Return delay type 3 (0.15 second delay)

TABDLY Select Horizontal-Tab delays:
TAB0 Horizontal-Tab delay type 0 (no delay)
TAB1 Horizontal-Tab delay type 1 (column position

dependent)
TAB2 Horizontal-Tab delay type 2 (0.10 second delay)
TAB3 Horizontal-Tab delay type 3 (expand tabs to spaces)

BSDLY Select backspace delays:
BS0 Backspace delay type 0 (no delay)
BS1 Backspace delay type 1 (0.05 second delay)

VTDLY Select Vertical-Tab delays:
VT0 Vertical-Tab delay type 0 (no delay)
VT1 Vertical-Tab delay type 1 (2.0 second delay)

FFDLY Select Form-Feed delays:
FF0 Form-Feed delay type 0 (no delay)
FF1 Form-Feed delay type 1 (2.0 second delay)

The c cflag field describes the hardware control of the terminal.
CBAUD Baud (Bit) rate:

B0 Hang up
B50 50 bps (baud)
B75 75 bps (baud)
Bl 10 110 bps (baud)
Bl 34 134.5 bps (baud)
Bl 50 150 bps (baud)
B200 200 bps (baud)
B300 300 bps (baud)
B600 600 bps (baud)

checking, bit stripping, carriage
return to new line mapping,
uppercase to lowercase map-
ping, and XON/XOFF software
handshaking can be set.
c_oflag Instructs the device
how to process output. Mapping
of case, new line translation, fill
characters, and delays for CR,
HT, NL, and BS can be set.
c_cflag Allows the setting of
speed (bps), character size, stop
bits, parity options, and control
of data terminal ready (DTR),
request to send (RTS), and data
carrier detect (DCD) RS-232
control signals.
c j f l ag Enables exception
handling, input-queue pro-
cessing, echoing, line editing,
buffer management, and map-
ping of special characters.
c_line Selects a line discipline;
usually set to 0. The line
discipline selects a mode of
mapping (filtering) characters
from a raw input queue to a
canonical input queue (this will
be explained later). This filter
mechanism allows line editing,
conversion of lowercase to
uppercase, expansion of tabs,
and so on. Most UNIX systems
support only one well-estab-
lished line discipline, but other
disciplines have been imple-
mented (for example, for han-
dling synchronous data links
supporting SDLC types of
communications).

c_cc[NCC] An array of eight
characters that can be assigned
to represent the interrupt and
quit signals (such as AC, DEL,
and BREAK), the erase charac-
ter, EOF, and EOL. Some of the
c_cc[] positions have dual
meanings that depend on other
flags, specifically the c_cc[4]
(EOF, MIN) and c_cc[5] (EOL,
TIME) positions.

All of the flags of the termio
structure are set by using the
bitwise AND(&) and OR(I)
operators with the constants
provided in the termio.h include

26

NOVEMBER 1989

Figure 6
file. Figure 6 describes many of
the possible flags. They are fully
documented in the manual
pages under termio(M) (Xenix)
and termio(7) UNIX System V
and by vendors of equivalent
drivers for DOS.

The fragment of code shown
in Figure 7 demonstrates how to
open and obtain the current attri-
butes for the device /dev/ttyOl.
Flags are assembled to change
the speed to 9600 bps, to change
the number of data bits to 7, and
to enable reading.

Once the flags are configured,
a call to IOCTL is made to set the
attributes. Set all values of the
termio structure to valid values
so the driver will not configure
randomly. Also check return
codes from library calls (dis-
cussed later).

Data Acquisition
Computer-to-terminal com-

munications is a simple, gen-
eral, and easily tested form of
data acquisition. The program in
Figure 8 will send a request
message to an attached I/O
device and expect a 10-byte
response back within 2 seconds.
If the expected response is
received in time, data received
back from the device is written
to a log file: otherwise error re-
covery is started. Most, but not
all, data acquisition devices
request responses in a similar
way. If an unsolicited response
arrives, it will be buffered for the
next read and is not lost. Select-
ed attributes for the device,
which are given below, are
stored in the termio structure.
cjf lag IGNBRK advises the
driver to ignore the break
sequence completely if the
break signal is received. The
driver could otherwise cause an
interrupt signal to be sent to the
application. IGNPAR states that
any received characters con-
taining detected parity errors are
ignored. IXON enables soft-
ware flow control on the output

B1200 1200 bps (baud)
Bl 800 1800 bps (baud)
B2400 2400 bps (baud)
B4800 4800 bps (baud)
B9600 9600 bps (baud)
B19200 19200 bps (baud)
B38400 38400 bps (baud)

CSIZE Select character size for both transmission and reception:
CS5 5 bits
CS6 6 bits
CS7 7 bits
CS8 8 bits

CSTOPB Send two stop bits, else one
CREAD Enable receiver
PARENB Parity enable
PARODD Odd parity, else even
HUPCL Hang up on last close
CLOCAL Local line, else dial-up (modem)
LOBLK Block layered output

The cjflag field of the argument structure is used by the line discipline to control
terminal functions. The basic line discipline (0) provides the following:
ISIG Enable signals
ICANON Canonical input (erase and kill processing)
XCASE Select canonical uppercase/lowercase presentations
ECHO Enable echo
ECHOE Echo erase character as BS-SP-BS
ECHOK Echo NL after kill character
ECHONL Echo NL
NOFLSH Disable flush after interrupt or quit

The c_cc[NCC] array contains characters that are mapped to special actions. As
characters are received by the device, they can be checked against the characters
stored in the c_ccQ array. This checking is enabled by setting combinations of the
ICANON, ISIG, and IGNBRK flags. If a match is found, a special action can be
performed by the device driver. Characters representing backspace, EOF, EOL, MIN,
TIME, and assorted signals are stored here.
c_cc[0] (VINTR) If matched, an interrupt signal is sent to the

controlling process.
c_cc[l] (VQUIT) If matched, a quit signal is sent to the controlling

process.
c_cc[2] (VERASE) If matched, the last enqueued character received is

deleted.
c_cc[3] (VKILL) If matched, the current line buffer is flushed and the

line is killed.
c_cc[4] (VEOF/MIN) If matched, the device driver assumes that the end of

input (EOF) has been reached. Any characters
pending in the input line buffer are immediately
passed to the application. This also serves as the
minimum number of characters to collect in raw
input mode when ICANON flag is not set.

c_cc[5] (VEOL/TIME) If matched, the device driver assumes that an entire
line has been assembled; the line is now available
for reading by the application. This also serves as a
timeout parameter if the ICANON flag is not set.

c_cc[6] (Reserved) Not used.
c_cc[7] (SWTCH) If matched, the current foreground process is moved

to the background. This is the job control switch
character (UNIX only).

NOVEMBER 1989

MICROSOFT
SYSTEMS
JOURNAL

Figure 7: Code Fragment to Obtain Attributes for a Device

28
the tty_stdin and tty_stdout have
been set to length 1. This
example can be adapted to work
with almost any I/O device that
is request/response driven. As
charac ters a r r ive , they are
buffered until the next read call
is sa t i s f ied . tx_b lock and
rx_block are simple character
arrays; they could be structures
con ta in ing more de ta i l ed
information about what is sent
and received.

Also note that the path name
of the device is /dev/ttyOl. This
is a standard pathname to a
UNIX device driver residing in
the /dev directory. Curiously
enough, /dev/ttyO1 is also a valid
path under DOS to the device
ttyOl . The Microsoft C run-time
library translates the forward
slash (/) to the back slash (\) in
file or device pathnames on calls
to file system routines. How-
ever, \dev\tty01 must be used at
the DOS command line (batch
file) level.

Input and Output Queues
Once the serial device attri-

butes have been selected and set
and the device has been opened,
I/O may begin. Three queues are
maintained by the UNIX serial
device dr iver — the output
queue, which can be written to,
and the raw and canonica l
queues, which can be read. (Do
not confuse these queues with
stdin, stdout, and stderr.)

Characters that are written to
the device are copied to the
output queue for transmission.
Depending on flag settings,
delays and/or translations may
be performed as characters are
transmitted. Figure 9 shows the
relationship of the raw and
canonical input queues. An
application can choose to read
characters from either. The raw
input queue is simple: anything
rece ived (exc lud ing pari ty
errors and break sequences) is
buffered and passed directly to
the application. When reading

#include <stdio.h>
finclude <termio.h>

static FILE *tty__fp;
static struct termio tty_params;

/* Open the device */

tty_fp = fopen("/dev/ttyOl", ”rwb");

/* Obtain its current attributes; stored at &tty_params */

ioctl(fileno(tty_fp), TCGETS, &tty_params);

/* Change desired attributes; stored at &tty_params */

tty_params.c_cflag = B9600 | CS7 | CREAD;

/* Set new attributes */

ioctl(fileno(tty_fp), TCSETS, &tty_params);

stream; IXOFF enables the
same on the input stream.
c_oflag No flags are selected
and all features represented by
this flag are disabled.
c_cflag B4800 selects the bit
rate of both the transmit and
receive channels. CS8 advises
that 8 data bits be sent and
received. CREAD enables the
read system call to transfer
characters from the device
driver’s buffer. HUPCL drops
the DTR signal on the last close
of the device (the device can be
opened more than once) .
CLOC AL advises the device not
to examine the DCD signal as a
qualifier when the driver opens
the device.
cjflag No flags are selected,
and all features represented by
this flag are disabled.
c_line The default line disci-
pline is 0.
c_cc[0] (VINTR) Not used
since the ICANON I ISIG flags
are not set.
c_cc[1] (VQUIT) Not used
since the ICANON I ISIG flags
are not set.
c_cc[2] (VERASE) Not used
since the ICANON I ISIG flags
are not set.
c_cc[3] (VKILL) Not used
since the ICANON I ISIG flags
are not set.

c_cc[4] (VEOF/MIN) Since
the ICANON flag is not set,
c_cc[4] contains the minimum
number of characters that must
be collected by the driver before
a read call is satisfied. Otherwise
it would represent the EOF
character. c_cc[4] can be used in
tandem with c_cc[5].

c_cc[5] (VEOL/TIME) Since
the ICANON flag is not set, the
c_cc[5] attribute contains the
number of 0.10 second incre-
ments the driver should wait for
before returning from a read.
Otherwise it would represent the
EOL character. c_cc[5] is a
watchdog that will wait until the
requested (or minimum) num-
ber of characters is available or
the timer has expired, whichever
comes first. This feature allows
application programmers to
specify the amount of time to
wait for an attached serial device
to send something (for example,
after a query has been sent to it).
c_cc[4] and c_cc[5] let you
specify the minimum number of
characters that must be collected
and/or the maximum amount of
time to wait for the characters;
no timing loops are required in
the application.

c_cc[6] Reserved.

c_cc[7] (SWTCH) Not used.

Note that the stream buffers for

NOVEMBER 1989

Figure 8: Program to Send a Request Message to an Attached I/O Device
#include <stdio.h>
#include <termio.h> /* Installed with .h files */

#define TTY_STDIN_FILE_NAME "/dev/ttyOl"
#define TTY_STDOUT_FILE_NAME "/dev/ttyOl"
#define LOG_FILE_NAME ’’logfile"

static char txjblock[10] = "SEND.DATA";
static char rx_block[10];
extern int errno;

29from the raw queue, it is
possible to configure the driver
to implement a watchdog timer
or specify a minimum number of
characters that must be available
before a read completes success-
fully. The size of the raw queue
is limited by a shared pool of
buffers; these buffers, called
clists under UNIX, are dynami-
cally allocated and released.
There is no pool of clists under
DOS; buffers are usually fixed,
because the device driver is
accessed through the DOS file
system. Remember that DOS is
not reentrant, so it is nearly
impossible to perform dynamic
memory allocation of clists
inside any DOS device driver.

The canonical input queue
obtains its characters from the
raw queue via a line discipline.
The line discipline is analogous
to a filter; as characters are
obtained from the raw queue,
they may be translated to other
sequences. For example, CR can
translate to NL (ICRNL flag).
The canonical input queue is
enabled with the ICANON flag,
which also advises the device
driver to look for the special
characters in the c_cc[] array
and take appropriate action in
accordance with the IBRK and
ISIG flags.

Interactive Terminals
Interactive programming

requires a special style of
coding. People are much less
predictable than machines, so
special care must be taken when
prompting and handling re-
sponses (valid or invalid). This
example assumes that there is a
dumb terminal or PC connected
to the serial port, either directly
or through a modem.

The program in Figure 10 is
trivial if input is from and output
is to the DOS console device.
During an interactive session at
a remote terminal on a serial
link, however, special precau-
tions must be taken. When the

main()
{

static struct termio termio_var;
auto FILE *tty_stdin, *tty_stdout, *log_file;
auto int error_flag, i;

if((tty_stdin - fopen(TTY_STDIN_FILE_NAME, "rb")) ==
(FILE *)NULL)

exit(1);

if((tty_stdout = fopen(TTY_STDOUT_FILE_NAME, "wb")) ==
(FILE *)NULL)

exit(2);

if((log_file = fopen(LOG_FILE_NAME, "wb")) == (FILE*)NULL)
exit(3);

/* Length of tty_stdin & tty__stdout stream buffers to 1 */

setbuf(tty_stdin, (char *)NULL);
setbuf(tty_stdout, (c har*) NULL);

if(ioctl(fileno(tty_stdin), TCGETS, &termio_var))
exit(4);

/* Set up the terminal attributes */

termio_var.c_iflag = IGNBRK | IGNPAR | IXON | IXOFF;
termio_var.c_oflag = 0;
termio_var.c__cflag = B4800 | CS8 | CREAD | HUPCL | CLOCAL;
termio_var.c_lflag = 0;
termio_var.c_line = 0;
termio_var.c_cc[VEOF] = sizeof(rx_block); /* MIN */
termio_var.c_cc[VE0L] =20; /* TIME */

if(ioctl(fileno(tty_stdout), TCSETS, &termio_var))
exit(5);

else
{

for(i = 0; i < 100; i++)
{
if(fwrite(tx_block, sizeof(tx_block), 1, tty_stdout) ’= 1)

fprintf(stderr,
"Can't write to I/O device on tty_stdout\n");

if(fread(rxjblock, sizeof(rx_block), 1, tty_stdin) == 1)
{

fprintf(stdout,
"Valid response from device received; Logging...");

if(fwrite(rxjblock,sizeof(rxjblock), 1, log__file) == 1)
fprintf(stdout, "Passed.\n");

else
fprintf(stdout, "Failed.\n");

}
else

fprintf(stderr,
"No response from device; errno: %d\n", errno);

}
fclose(tty__stdin);
fclose(tty_stdout);
fclose(log_file);

>
return(0);

NOVEMBER 1989

MICROSOFT
SYSTEMS
JOURNAL

Figure 9: Raw and Canonical Input Queues

Canonical Input Queue
Erase & Kill ProcessingProcess

Canonical

Raw Input Queue
Output Queue Echo

Mode

Serial I/O
Link

typical UNIX character device driver.

, they are placed on the raware

raw queue, they are moved to the canonical input queue via the sei
Spline acts as a filter; removing, replacing, or adding characters on common

30

the buffers for the streams
tty_stdin and tty_stdout have
been set to length 1.
c_if la IGNBRK advises the
driver to ignore the break
sequence completely if the
break sequence is received;
otherwise, the driver could
cause an interrupt signal to be
sent to the application. IGNPAR
states that any received char-
acters containing detected parity
errors are ignored. IXON en-
ables software flow control on
the output stream. IXOFF

enables software flow control on
the input stream. CLOCAL
disables modem control; DCD is
ignored when opening the
device. ICRNL specifies that the
CR character is converted to the
LF (’ \n ') character on input.
c_oflag OPOST enables the
post-processing of output.
ONLCR converts the ’ \n ' (LF)
character to the CR/LF charac-
ters on output. OCRNL converts
the CR character to the LF (’ \n ’)
character on output. TAB3
expands the horizontal tab char-

terminal attached to the serial
link is prompted for an integer,
there are three possible re-
sponses: correct, incorrect, or no
response. The enclosed switch
statement handles these three
cases. This example sets up a
terminal with many of the
features that a shell might use for
command line interpretation,
notably line editing, character
echoing, and abort sequences.

Selected attributes for the
device, given below, are stored
in the termio structure. Note that

NOVEMBER 1989

on input, the last valid character
entered is erased.
c_cc[3] (VKILL) If matched
on input, whatever has been
assembled in the current line
is erased.
C_CC[4] (VEOF/MIN) This is
the designated EOF character,
typically AZ (DOS) or AD
(UNIX), although any character
will work.
c_cc[5] (VEOL/TIME) repre-
sents the EOL character;
typically ’ \n ’; any character will
work, however. This character
is the anchor used by the line
discipline routines to mark the
end of a line. Typically lines are
assembled and edited by the
user. When the EOL character
(stored in c_cc[5]) is received,
the line is available for reading
by the application.
c_cc[6] Reserved.
c_cc[7] (SWTCH) Not used.

Serial Link
The examples of data acqui-

sition and request/response
communications discussed in
Figures 8 and 10 demonstrated
important and useful features
when using the UNIX (or com-
patible) serial I/O device driver.
All I/O was performed with
familiar calls to the C standard
library. Many useful features of
the UNIX serial I/O device dri-
ver can save the C programmer
many headaches—features such
as watchdog timeouts, buffering
in both the TX and RX
directions, CR and LF trans-
lation on both input and output
streams, line editing, tab expan-
sion, and XON/XOFF software
handshaking. One common
interface, IOCTL, is used to
adjust device parameters using a
standard system call. Serial I/O
software is portable between
UNIX and DOS systems.

There are other modes of
serial link communications and
other programming contexts,

but they are usually variations of
one of the examples presented.
Advanced techniques of serial
communication programming
might address any of the
following topics.
Advanced Modem Control If
the CLOCAL flag is cleared, the
device will wait for the DCD
line to become active for an open
call to complete. This allows the
application to block for a
modem connection before the
device driver opens. UNIX
programmers can set the
O_NDELAY flag when per-
forming an open operation. The
open function will then use
errno to return immediately,
indicating success (DCD pres-
ent) or failure (DCD absent) in
opening the device.
Reacting to Interrupt Signals
Under UNIX, the reception of
DEL or A\ (changeable defaults
in the c_cc[] array) sends the
signals interrupt or quit,
respectively. Reception of a
BREAK sequence will also send
the interrupt signal. If the flags
ICANON I ISIG are set, a signal
is sent to the controlling process.
Under DOS, some device
drivers provide an option to kill
the currently executing process
by issuing DOS interrupt 4BH.
Sending the BREAK Char-
acter Calls can be made to
IOCTL to send the BREAK
character. See the IOCTL com-
mand TCSBRK.
Forcing the Driver XON/XOFF
State Calls can be made to
IOCTL to suspend output and
restart suspended output. See
the IOCTL command TCXON.
Handling Parity Errors If
parity checking is enabled by
setting the PARENB and
PARMRK flags and clearing the
IGNPAR flag, a character (X)
received with a parity error is
passed as a special sequence
(' \x7F ', ' \0 ’, X) to identify the
character in error. The character

acter to spaces up to the next tab
stop. Tab stops usually occur
every eight characters.
c_cflag B4800 selects the bit
rate of both the transmit and
receive channels. CS8 advises
that eight data bits are sent and
received. CREAD enables the
read system call to transfer char-
acters from the device driver’s
buffer. HUPCL drops the DTR
signal when the device is closed
for the last time. CLOCAL
advises the device not to exam-
ine the DCD signal as a qualifier
in opening the device.
cjflag ICANON enables the
processing of character filtering
from the raw input queue to the
canonical input queue. Line
editing and character echoing is
now performed by the device
driver. The watchdog for a timer
and/or a minimum number of
characters seen in the last exam-
ple is no longer active. c_cc[4]
and c_cc[5] now contain char-
acters representing EOF and
EOL, respectively. ISIG tells
the driver to check each input
character against the special
characters designated in the
c_cc[] array for INTR, QUIT,
and SWTCH. If any of these
characters are found in input, the
appropriate action is taken (that
is, signals are sent). ECHO
echoes all characters received to
the output queue. ECHOE
echoes the designed erase char-
acter as BS-SP-BS, thus erasing
the character in error.
c_Jine Selects a line discipline;
usually set to 0.
c_cc[0] (VINTR) If matched
on input, the interrupt signal is
sent to the controlling process.
Under DOS, the current process
is k i l l ed . Note that the
ICANON I ISIG flags are set in
c_cflag.
c_cc[1] (VQUIT) If matched
on input, the quit signal is sent to
the controlling process.
c_cc[2] (VERASE) If matched

31

NOVEMBER 1989

MICROSOFT
SYSTEMS
JOURNAL

TTY-STDINJ
TTY STDOUT

(FILE *)NULL)fopen (TTY_STDIN-

fopen (TTY_STDOUT

NULL) ;

TCGETS

| IGNPAR | IXON |
CLOCAL | ICRNL;
ONLCR | OCRNL | 1

CS8 | CREAD | HUI

IXOFF
OPOST

CLOCAL;
ECHO | ECHOE;ICANON

[VQUIT] = '\003
[VERASE] = '\b'

EOF!_CC[VEOF]

TCSETS

EOF:

’ \ x7F’ is then read as
’\x7F ’,’\x7F
Recovering from DOS Critical
Er rors DOS will translate
critical errors to interrupt vector
24H. If the application traps this
interrupt, all critical errors en-
countered by a device driver
should trap the user’s exception
handler with sufficient infor-
mation (device name and type of
critical error) to recover.

Command Line Interface
As mentioned earlier, an

advantage to performing serial
I/O with a device driver is
having access through the file
system. Command line redirec-
tion (and batch/shell files) can
communicate with the device.
For example, under DOS the
command

C>dir > \dev\tty01

sends a directory listing to a
serial device. Note that no men-
tion has been made of how to
change device attributes from
the command line. This is
accomplished with the UNIX
command stty. The stty com-
mand is also capable of obtain-
ing the current attributes of a
device and displaying them. The
same command is available with
DOS serial device drivers; how-
ever, DOS requires the device
path to be \dev\ttyOl. Refer to
Figure 11 for an example of stty
under both DOS and UNIX.

In the examples in Figure 11,
the stty program reopens its
standard input, the serial device
/dev/ttyOl , and sets its attributes
to 9600 bps, even parity
enabled, 7 data bits per charac-
ter, XON/XOFF software
handshaking enabled, and
modem control enabled. This
configuration allows commun-
ication with a popular laser
printer over the serial link. In the
two commands shown in Figure
12, file_l is sent through a
PostScript® preparation filter
and finally to a printer attached
to /dev/ttyOl.

NOVEMBER 1989

Figure 11: Using stty under DOS and UNIX

33Under UNIX
$stty 9600 parenb -parodd cs7 ixon ixoff -clocal hupcl < /dev/ttyOl

Under DOS
Ostty 9600 parenb -parodd cs7 ixon ixoff -clocal hupcl < \dev\tty01

System Interface
There are some intr ins ic

features of the operating system
that concern both UNIX and
DOS programmers that you
should be aware of when open-
ing a serial device for I/O. The
first concern is how the blocking
(or p rocess suspens ion) is
handled. Under DOS, there is no
facility to suspend a process on
the assumption that it will
resume running when some
event has occurred (or has not
occur red) . Under UNIX, a
terminal driver can cause the
suspension of a process if there
are no characters to read or a line
has not yet been completely
as sembled via a se lec ted
canonical line discipline. Once
characters are ready or a line has
been assembled, a suspended (or
blocked) process is awakened to
run. Since DOS has no facility
that suspends a process to wait
for I/O, any request to a device
driver should return immedi-
ately (after checking for set
watchdog t imers) , whether
characters (or lines) are ready or
not. If nothing is available, EOF
can be returned.

The second concern is that
there are differences in the treat-
ment of EOF indications. DOS
supports two access modes for
reading and writing character
devices—ASCII text mode and
binary mode. If the character
laH (AZ) is read, the input from
a file or device opened in text
mode is terminated (shut down)
and an EOF indica t ion is
returned. Even if there are
characters pending, any and all
read requests from this point
forward are ignored and the
EOF indica t ion is a lways
returned. If the file were opened
in binary mode, the EOF
character (AZ) would be passed
to the application, and further
requests for characters would
be honored.

Text mode also insists on

Figure 12: Communicating with a Laser Printer over a Serial Link

Under UNIX
$cat file_l | PS_filter > /dev/ttyOl

Under DOS
C>type file_l | PS_filter > \dev\tty01

translating LF to CR/LF on out-
put and CR/LF to LF on input, so
I/O in text mode could add
characters or dele te them.
Binary mode reads and writes
exactly what is requested. These
features are intrinsic to DOS.

DOS device drivers should
return EOF if there is nothing to
read (after checking for set
watchdog timers). A device
driver could block the process
a t t empt ing the r ead ; the
application might then hang
forever waiting for a character.
If EOF is returned, the appli-
cation can do something else
and attempt another read later.
Anything that arrives between
reads will be buffered.

When the EOF character, des-
ignated by c_cc[4], is received
by a UNIX character device
driver, all characters waiting to
be read are immediately passed
to the application without wait-
ing for a new line, and the EOF
is discarded. Thus if no char-
acters are waiting in the input
queue—that is, if EOF occurred
on the beginning of a line—no
characters will be passed back to
the application; this is a standard
EOF indication under UNIX.

The third concern is the differ-
ence in the treatment of signals.
The signal mechanism available
under the UNIX operating sys-
tem is not available under the
DOS operat ing sys tem, al-
though most C run-time librar-
ies, most notably Microsoft C

5.10, have mechanisms that
perform similar functions.

The signal() function call
allows the UNIX and DOS pro-
grammer to catch special mes-
sages sent to processes when
exceptions such as floating
point overflow, AC, and modem
disconnect occur. Async device
drivers under UNIX are also
able to send signals to related
processes. These signals are
typ i ca l l y INTR, QUIT ,
HANGUP, and BREAK. DOS
does not provide the signal
mechanism that UNIX does, al-
though DOS drivers can be de-
signed to have similar functions.

Conclusion
This article explored how to

write portable serial I/O soft-
ware, useful features of a gen-
eral serial I/O device interface
operating under both UNIX and
DOS. UNIX and its many
hybrids all share the same serial
I/O interface. With AT&T,
Digital Equipment, Hewlett-
Packard, IBM, Microsoft, and
other companies, embracing
UNIX as a standard product
offering, it simply cannot be
ignored by the professional pro-
grammer.

Suggested
Readings

For a thorough
discussion of PC
serial port hardware:
Greenberg, R.M.,
“Keeping Up With
the Real World:
Speedy Serial I/O
Processing,” MSJ
(Vol. 2, No. 3), pp.
37-50.

For an in-depth
discussion of the
internals of an MS-
DOS device driver:
Greenberg, R.M., “A
Strategy for Building
and Debugging Your
First MS-DOS
Device Driver,” MSJ
(Vol. 2, No. 5), pp.
51-65.

For an excellent
reference on UNIX
device driver
internals: Eagan, J. I.,
and Teixeira, T. J.,
Writing a UNIX
Device Driver (John
Wiley, 1988).

1 As used herein, "DOS" refers to the MS-DOS and PC-DOS operating
systems.

NOVEMBER 1989

Wbthink
programmers need

more drive.
Get the tools you need to enter

the CD-ROM age.
Microsoft Programmer’s Library

Software plus a Denon
CD-ROM Drive—for under $1,000.

OS/2, Windows™ and MS-DOS® environments,
C, Macro Assembler, Pascal, FORTRAN and
BASIC. And the latest versions of 72 essential
reference texts, with regular updates avail-
able from Microsoft. You’ll also have 26 MB of
indexed code you can actually cut-and-paste
right into your text editor.

The Denon CD-ROM drive—with its
advanced servo-circuitry, high reliability, multi-
mode flexibility and access time of 400 ms—
dramatically cuts manual search time and
downtime. And when you really want to switch
modes, the built-in speaker and jacks let you
play your favorite audio CDs. So you can listen
to a keyboard for a change. But if you just can’t
stop programming, Microsoft audio software
turns your CD drive into a programmable audio
CD player. Order now and this special music
program (a $99 value) is jwrs free... while
supplies last.

15-Day Money-Back Guarantee. Order
direct from Microsoft today and get Microsoft
Programmer’s Library complete with the
Denon CD-ROM Drive (IBM® AT® version)
and Microsoft’s audio program for just $949.

Call now and save $799!
(800) 227-4679

Microsoft
Making it all make sense’

Call Microsoft direct at (800) 227-4679
now for complete details on the bundled bargain
of the year: Microsoft Programmers Library

with 72 reference
manuals and guides
—over 278 MB of
data on a single
compact disc. Plus
3-user OPTI-NET "
software, including
2 additional user li-
censes (a $130 sav-
ings). And Denon’s
SCSI CD-ROM
drive system, com-
plete with interface
card and cables . . .
all for just $949.

With accelerating hardware and soft-
ware development by leading companies like
IBM, Intel, Lotus and Microsoft, CD-ROM is
fast becoming a standard peripheral of the 90’s.
Utilizing CD-ROM technology, Microsoft Pro-
grammer’s Library helps you work faster. . .and
smarter. Over 100,000 hypertext links stream-
line your search time, giving you instant access
to all documentation on networks, hardware,

“If you do much
programming and
your time is worth
anything at all, get
a CD-ROM reader
and Microsoft’s
Programmer’s
Library. You wont
regret it. Highly

recommended’.’
—Jerry Poumelle,

Byte Magazine, Sept. 1989

©1989 Microsoft Corporation. All rights reserved. MS-DOS, Windows and the Microsoft logo are registered trademarks and Making it all make sense is a trademark of the Microsoft Corporation. IBM and ATare registered
trademarks of International Business Machines Corporation. OPTI-NET is a trademark of On Line Computer Systems Inc. Offer expires December 31, 1989.

Simplifying Pointer Syntax for
Clearer, More Accurate
Programming

35

Greg Comeau

ointers containing the address of
functions, variables, or objects clarify and simplify
your code. They are tricky, though, and confusing if
carelessly written. The derivations of pointer syntax
that are presented in this article should make pointer

usage perfectly clear to you. While these derivations are simple,
some of them may be new to you or may produce results you would
not have predicted. For example, the output of the program in Figure
1 may not be obvious, although it is a common and basic C construct.

An analysis of Figures 2A and 2e will give us a common frame of
reference for this article. In these figures, the value of c is ’a', and the
value of p when p = &c executes is 1000. The value 1000 is the
address of c (randomly chosen for this discussion), and the & sig-
nifies that we want to take the address of the accompanying object
operand c.

Therefore p = &c implies that the data contained in p is actually
the address of another variable, which also contains its own data.
This seems logical, since c and p each have their own storage space
and can hold independent data within that storage space. It
is easy to forget this when your declarations and programs become
more complex.

ASICALLY, THERE ARE

THREE THINGS YOU CAN DO

WITH POINTERS: ASSIGN

ANOTHER VALUE TO THE

POINTER, ASSIGN THE

POINTER'S VALUE TO

ANOTHER POINTER

EXPLICITLY BY MEANS OF AN

ASSIGNMENT OR IMPLICITLY

AS AN ARGUMENT TO A

FUNCTION, OR

DEREFERENCE THE

Pointer Uses
Basically, you can do three things with pointers: assign another

value to the pointer, assign the pointer’s value to another pointer
explicitly by means of an assignment or implicitly as an argument to
a function, or dereference the pointer.

Assigning another value to the pointer is as simple as coding the
assignment (see Figure 3A). The memory map of the program as it
executes will help you understand exactly how this works (see Figure
3e). Notice how the reassignment to p simply causes p to change
values; this is the normal functioning of a variable and applies even
though we are dealing with a pointer. The reassignment of a pointer,
however, can have devastating effects on some programs. This is
especially true with heap space when free subroutine calls are not
issued between the assignments.

Using the pointer in an expression such as an rvalue shows once
again that a pointer is just another variable. In Figures 4A and 4e, the
statement p = &c assigns the address of c to p. Then the statement
p2 = p assigns to p2 the address of c by using the value contained in

Greg Comeau is a principal of Comeau Computing, an independent software
development firm specializing in UNIX® and C productivity tools. He

also does consulting and training for UNIX and C users.

POINTER.

NOVEMBER 1989

MICROSOFT
SYSTEMS
JOURNAL

Figure 1: Simple C Construct
more going on behind the scenes
than is apparent at first glance.
The following discussion is
based on a debugging technique
described in the sidebar “In-
Line C Program Debugging.”
For further information, refer to
“Pointers 101: Understanding
and Using Pointers in the C
Language,” MSJ (Vol. 4, No. 4).

The debug.h file explained in
the sidebar is included in the first
line of PTRINC. Examining
lines 9 and 10 you will find the
declarations char *p and char
*origp, which are two pointers
to char objects.

On line 12, p is assigned to the
address of a string literal—a
group of characters next to each
other in a source program,
prefixed and suffixed by the
double-quote character. Intern-
ally, this kind of construct is a
static array of characters con-
taining each character that is en-
closed in the quotes, including a
terminating null byte which is
added by the compiler. This
format is known as ASCIIZ.

A string literal is a good exam-
ple of an unnamed area of stor-
age. To use a string literal, we
must either set a pointer to its
address as PTRINC has done or
use it as an argument to a func-
tion where its address becomes
apparent. Most of us have used
this context in our first C pro-
gram by specifying a string
literal as an argument to printf.

For a complete explanation of
string literals, especially those
involving multibyte characters,
refer to the ANSI C draft (the
l a t e s t ve r s ion , pub l i shed
December 7, 1988, is available
from the Computer and Busi-
ness Equipment Manufacturers
Associat ion in Washington,
D.C.) or a relatively new C text
such as The C Programming
Language , Second Edi t ion ,
Kemighan and Ritchie (Pren-
tice-Hall Inc., 1988).

Line 13 of PTRINC prints the
characters ’a' through k in our

36 #include <stdio.h>

main()
(

char *p - "abcdefg”;

printf("%c\n", *(p++));
}

upon the compiler and hardware
in question).

Unary * Operator
Near the end of Figure 5A, c is

a char object whose value is 'a'
and p2 is a pointer to a char ob-
ject whose value is the address
of c. *p2 represents what p2
points to, not the contents of p2
as it may appear to read. For
example, using i and j from the
previous example, we know that
j = i says j is equal to the contents
of i. There is no reason to expect
pointer notation to function
differently. For example, Figure
5A contains the statement

p2 = p;

which requests that the contents
of p be placed into p2.

To explain further why *p2
does not mean “the contents of
p2,” it is worth noting that when
we say j = i, it actually means
j = *&i. Read *&i as “a pointer
to the contents of the address of i.”
A memory map of Figure 5A is
shown in Figure 5e.

Besides mapping the contents
of what p2 points to, *p2 can
represent the contents of the
address of p2. Since in this case
the content of p2 is 1000, this
expression implicitly becomes
* char *1000 — meaning the
contents of memory location
1000, taken to be a char, which
is ’A'.

Derivations
Now that we’ve gotten some

of the background out of the
way, we can analyze some
concrete pointer examples .
PTRINC.C (see Figure 6) shows
a small group of simple pointer
operations. These pointer oper-
ations illustrate that there is

p. This does not imply that p2
points at p. Instead the value of p
gets copied into p2. This is no
different from

int i;
int j;

i = 5;
j = i;

where we know that j will also
contain its own copy of the value
5. To prove this, run the code
from Figure 4A to see what the
output will be. Note that it will
not print out numbers, like 1000,
used in the memory maps.
Instead the %p format specifier
of printf will encode the output
in segment:offset format.

The last use of pointers in-
volves the value that the pointer
contains through the unary *
operator. The unary * operator is
one way to accomplish indirec-
tion and dereferencing of
pointers. For the moment, let’s
take a look at the last line of
Figure 5A. As you can see from
the memory map, the result of
this statement is to change the
value of c from 'a' to ’A.' Since
p2 becomes another name for c,
we can code

*p2 = 'A';

instead of

c = 'A';

The indirection ability of
pointers is very powerful. It
allows us to access named sym-
bolic variables and unnamed
variables (identifiers) with the
same ease—without requiring
that you keep a lot of
information about which objects
you are pointing to, where they
are located, and so on. This
indirection can result in faster
and smaller code (depending

NOVEMBER 1989

Figure 2A: A Variable Containing the Address of Another Variable
main ()
{

char
/* ..
char

c =

*/
*p;

/*
p « &c;
/*

debug format. Line 14 assigns
origp to array—the same place
that p is pointing to. For a visual
representation of the statements
in lines 12 to 32, see Figure 7.

At line 17, the value printed
for the contents of p is 1234,
which is the same as &array[0].
Note that line 17 does not print
the address of p. If we wanted
that, we would have coded
printp(&p) to produce an output
of &p = 1200. The address of p
is a given, in accordance with
the top of Figure 7. An arbitrary
location for it has been chosen
since it will not affect this dis-
cussion (actual execution of the
code will give another result).
Therefore, like any occurrence
of text which only mentions p,
printp(p) produces the contents
of p; origp = p functions sim-
ilarly. The value printed by the
execution of line 17 should point
at the beginning of the array
since we have not incremented
or reassigned a value to p.

Line 18 increments p. As with
all pointers, the increment value
is contingent upon the derived or
base type of the pointer. In
PTRINC, p is a pointer to char,
therefore the increment will be
1, the sizeof(char).

If PTRINC had been written
so that p was a pointer to an
integer (an int *), p++ would
have a scaling factor of
sizeof(int), which typically
evaluates to 2 or 4 bytes
depending upon the compiler. In
C, scaling factors allow pointers
to be manipulated without
forcing the programmer to
worry about adjusting the given
pointer by hand. The pointers,
however, must be of the proper
type. This can cause a problem
because the C language does not
let you create pointers to an
object with variable size. The
objects may be created in the
heap via the various alloc
routines. This concept will be
covered in a future article. Note
that such objects do not need to

Figure 2s: Memory Map for Figure 2A

Memory map of variables c and p while processing declarations:

1 byte of memory for c /* char c = ’a'; 7’a’

uninitialized 4 bytes of memory for p /* char *p 7

’a’

p contains the address of c1000

1000

1001

1010

1014

1000

1001

1010

1014

be a linked list and that there are
useful cases in which a method
for obtaining the object’s length
after the allocation is unneces-
sary (dynamic copies of ASCIIZ
strings, for example).

The output of line 19 reflects
the increment of p by 1. Line 18
allowed p to point at the b within
the array, as expected.

Before continuing our
examination of PTRINC, we
need to discuss side effects,
sequence points, expression
statements, and the comma
operator—features of the C lan-
guage that relate directly to line
20 of PTRINC.

Side Effects
A side effect is a change in an

object’s value due to the evalu-
ation of an expression. Side

A STRING LITERAL IS AN
UNNAMED AREA OF

STORAGE. TO USE ONE,
EITHER SET A POINTER TO
ITS ADDRESS OR USE IT AS

AN ARGUMENT TO A
FUNCTION WHERE ITS
ADDRESS BECOMES

APPARENT. MOST OF US
HAVE USED A STRING

LITERAL AS AN ARGUMENT
TO PRINTF.

NOVEMBER 1989

MICROSOFT
SYSTEMS
JOURNAL

Figure 3A: Assigning Another Value to a Pointer
value; in the process, it also
produces a side effect.

Side effects involving func-
tions can modify the value of a
variable in a way that might not
be clear in a large or complex
program. For example, in

int i;

void f(void)
{

}

main()
{

f 0 ;
}

it may appear that the call to f is
innocent, but actually it mod-
ifies the value of i. No real harm
is done here, although the incre-
ment of i may not be apparent in
a larger program or in a program
with many statements occurring
in f and main. If, however, we
modify this code slightly by
introducing another function
named g

int g(void)
{

f 0 ;

return (5);
1

and add

j = g() + i;

to main, the resulting value of j
may not be clear. Either way we
are dealing with a side effect.

Code such as this assignment
statement

i = 5;

has the side effect of replacing
the value of i with 5. As long as
an expression modifies an
object, a side effect occurs.
Therefore a side effect can have
ill effects.

The classic example of a side
effect with an expression
statement is:

a[i] = i++;

In this situation, the compiler
has the choice of computing the
value of the subscript before or
after it computes the value on the

main()
{

char
char

char

p « fid;

}

Figure 3s: Memory Map of the Actions of Figure 3A

Memory map of variables c, d, and p while processing declarations:

1 byte of memory for c /* char c = ’a’; 7

1 byte of memory for d /* char d = ’z’; 7

’a’1000

1001

1002

1010

1014

4 bytes of memory for p /* char *p 7uninitialized

Memory map of variables c, d, and p while processing executable code:

p = &c;

’a’1000

1001

1002

1010

1014

p FIRST contains the address of c1000

p = &d;

’a’1000

1001

1002

1010

1014

p NOW contains the address of d1001

effects happen as a result of
function calls, assignment
expressions, auto-increment
expressions, and auto-decre-
ment expressions. Unless an
expression is void, it produces a

NOVEMBER 1989

Figure 4A: Using the Pointer in an RValue Expression
right-hand side of the equal sign.
We would expect this unpredict-
ability to be incorrect, but the
compiler nevertheless makes
this decision on its own.

Three more examples are
represented by the code:

i = 5;
func(i++, i++);

In the first scenario, the com-
piler chooses to generate code to
perform the post increment after
both i’s are evaluated. Both
arguments will be 5; the value of
i after the expression can be
either 6 or 7.

The i’s are post-incremented
in the second scenario in the
order shown; the first argument
will be 5 and the second one will
be 6. The value of i after the
expression will be 7.

The i’s are post-incremented
in the last scenario in reverse of
the order shown; the compiler is
not constrained to evaluate the
arguments of a function in left-
to-right order. The second argu-
ment will be 5 and the first one
will be 6. The value of i after the
expression will be 7.

Generally speaking, the third
scenario will usually be true,
since most compilers put the
arguments to functions on the
stack in reverse order. This,
however, does not necessarily
imply that the arguments are
evaluated as they are put on the
stack. All side effects of
function arguments are evalu-
ated before calling the function,
which makes them consistent
and does not conflict with any of
the scenarios given above.

As tricky as these examples
are, we can accept them after
giving them some thought. In
fact, these examples appear
much more sensible than the
statement:

j = i++ + i++;

I will leave this one as an exer-
cise. The possibilities it presents
will be similar to those dis-
cussed above.

39main()
{

char c = 'a ’;
char d « 'z’;
/* */
char *p;
char *p2;

/* */
p ■ fic;
p2 » p;
p « fid;
/* */
print f("%p\n", p);
print f("%p\n", p2);

1

is how statements such as
j = i = 5 can occur without
wreaking havoc.

Sequence Points
A sequence point invokes the

concept of a hypothetical C
machine. In such a machine, the
compiler’s code generator must
completely follow your C code.
A more precise definition is
shown in Figure 8. Every state-
ment in this C machine must be
executed in the order in which it
has been coded: statement order
followed by flow of control
order. This means that the hypo-
thetical C machine allows few if
any optimizations to take place.

This C machine exists only in
theory; in practice no compiler
will follow it. The comma
operator and the volatile key-
word (which many compilers
still do not support) serve the
same function as the hypo-
thetical C machine. The comma
operator is explained in the next
section. The volatile keyword
was explained in “A Guide to
Understanding Even the Most
Complex C Declarations,” MSJ
(Vol. 3, No. 5). Their purpose is
to ensure that agreement points
exist at appropriate places.

Comma Operator
As with all sequence point

operators, the comma operator
ensures that its operand expres-
sions are evaluated in left-to-
right order. The result of the
comma operator is always the

Expression Statements
Most C programmers do not

realize that C is more expres-
sion-based than any of the other
popular general-purpose lan-
guages. For instance, even
though we typically refer to a
statement such as

i = 5;

as an assignment statement, it is
actually an assignment expres-
sion. A statement in C can be one
of the standard flow control
statements such as for, goto, and
break. In the Microsoft® C
Version 5.1 Optimizing Com-
piler manual, the syntax sum-
mary on page 229 in Appendix B
of the User's Guide Language
Reference manual informs us
that a statement may be of the
form:

expression;

The assignment listed above
is actually an expression state-
ment containing an assignment.

We’ve already examined
several situations in PTRINC
that prove that this example is an
assignment expression state-
ment. For instance, line 18 of
PTRINC contains p++. Even
though this resembles p = p + 1,
the syntax is clearly a construct
that allows it to stand alone.
Even p = p + 1 results in a
value—this statement not only
assigns p + 1 to p, it also returns
p. The return value of the
expression is often ignored; this

NOVEMBER 1989

MICROSOFT
SYSTEMS
JOURNAL

Figure 4s: Memory Map for Figure 4A

Memory map of variables c, d, p and p2 while processing declarations:40
1 byte of memory for c /* char c = ’a';* I

1 byte of memory for d /* char d = ’z’;* /

1000

1001

1002

1010

1014

1018

4— 4 bytes of memory for p /* char *p* I

4— 4 bytes of memory for p2 /* char*p2* /

uninitialized

uninitialized

Memory map of variables c, d, p, and p2 while processing executable code:
p = &c;

1000

1001

1002

1010

1014

1018

’a’

___ p FIRST contains the address of c

<4— 4 bytes of memory for p2 still left unchanged

1000

uninitialized

p2 = p;

1000

1001

1002

1010

1014

1018

’a’

1000

1000 p2 NOW contains the address of c
note that p2 DOES NOT point AT p

P = &d;

1000

1001

1002

1010

1014

1018

’a’
p now contains the address of d

1001

1000 p2 has no need to change

value of the last expression in
the expression list. Generally,
the comma operator cannot
force the evaluation of a given
statement sequence, such as a
for or block compound state-
ment. The comma operation is
only valid within expressions—
it does not control statements,
though it may be used within the
controlling expression of a con-
ditional statement.

The comma operator is differ-
ent from a semicolon; it occurs
in expressions, while the semi-
colon terminates statements.
Also, note that the comma oper-
ator has nothing to do with the
comma that is used to separate
function arguments. In the latter
case, the comma serves strictly
as punctuation.

PTRINC.C
We’ve just discussed many

features of C; I’ll now explain
how they pertain to line 20 of
PTRINC. Line 20 of PTRINC
contains the statement *p++. To
determine what this means, look
at the operator precedence table
(see Figure 7 for the output of
line 20). A precedence table can
be found on page 137 of the
Microsoft C 5.1 Optimizing
Compiler Language Reference.

The precedence table reveals
whether line 20 increments the
contents of p, increments p,
changes the address of p, incre-
ments the contents of the object
p points to, or performs some
combination of these.

Some of these cases are
obvious. The first two cases are
the same for the reasons stated
earlier. Case c cannot be true,
since we do not have the ability
to change the address of a
variable, especially when that
variable is an identifier.

We are left with the following
possibilities: line 20 increments
the contents of p, increments the
contents of the object p points to,
or performs some combination
of the above.

NOVEMBER 1989

MSJ Order your back issues of Microsoft■ Systems Journal. They’re now available
at discounted prices. Here’s a complete listing
of all back issues of MSJ in stock. Pick
and choose the ones that interest you;
or, if you prefer, get complete volumes

BACK
ISSUES

(and save a few dollars). But don’t delay. Supplies are
limited; first come, first served.

October 1986: Vol. 1 No. 1 May 1987: Vol. 2 No. 2
Article Author Page

♦ Advanced Reuter Terminal Gives
Traders Windows on Financial World

MSJ Interview 1

♦ DDE: A Public Protocol for
Advanced Application Linkages

Harvey Berger 7

♦ New Intel Graphics Coprocessor
Makes Windows Sparkle

Joe Desposito 17

♦ TI’s Programmable Graphics
Processor Perks up PC Pixels

Joe Desposito 21

♦ Latest Dialog Editor Speeds Charles Petzold 25

Article Author Page
♦ Microsoft Operating System/2: A

Foundation for the Next Generation
Tony Rizzo 1

♦ OS/2 Windows Presentation Manager:
Microsoft Windows on the Future

Manny Vellon 13

♦ OS/2 DOS Environment: Compatibility
and Transition for MS-DOS Programs

Joel Gillman 19

♦ OS/2 Multitasking: Exploiting the
Protected Mode of the 286

Ray Duncan 27

♦ OS/2 Inter-Process Communication:
Semaphores, Pipes, and Queues

Ray Duncan 37

♦ A Compleat Guide to Writing Your
First OS/2 Program

Charles Petzold 51

♦ Turn Off the Car to Change Gears:
An Interview with Gordon Letwin

Lori Valigra 61

♦ A Simple Windows Application for
Custom Color Mixing

Charles Petzold 67

July 1987: Vol. 2 No. 3
Article Author Page

♦ PLEXUS Introduces Windows-based
Tools for Building Image Databases

Kevin Strehlo 1

♦ Porting MS-DOS"• Assembly Language
Programs to the OS/2 Environment

Ray Duncan 9

♦ Microsoft Windows 2.0: Enhancements
Offer Developers More Control

Michael Geary 19

♦ Keeping Up With the Real World:
Speedy Serial I/O Processing

Ross M. Greenberg 37

♦ BLOWUP: A Windows Utility for
Viewing and Manipulating Bitmaps

Charles Petzold 51

♦ Increase the Performance of Your Marion Hansen & 59
Programs with a Math Coprocessor Lori Sargent

♦ TIFF: An Emerging Standard for Nancy Andrews & 71
Exchanging Digital Graphic Imagines Stan Fry

Windows Application Development

December 1986: Vol. 1 No. 2
Article

♦ Aldus: Preparing PageMaker
Author
Kevin Strehlo

Page
1

for the Move to Windows
♦ Moving Toward an Industry Nancy Andrews 7

Standard for Developing TSRs
♦ A Step-by-Step Guide to Building Charles Petzold 13

Your First Windows Application
♦ New XENIX Version Will Be First Joe Desposito 25

to Run On the Intel 80386
♦ A New Generation of Debugging Charles Petzold 29

Arrives with CodeView

March 1987: Vol. 2 No. 1
Article Author Page

♦ IRMA: A 3278 Terminal Emulator for Frank Derfler & 1
Micro-to-Mainframe Communication Edward Halbert

♦ Upgrading Applications for Robert Cowart 11
Multi-user Environments

♦ Expanded Memory: Writing Programs Marion Hansen & 21
That Break the 640K Barrier Bill Krueger &

Nick Stuecklen
♦ Keep Track of Your Windows Charles Petzold 33

Memory with FREEMEM
♦ A Guide to Debugging With CodeView David Norris &

Michael J. O’Leary
41

♦ Page Description Languages: High-Level Steve Rosenthal 49
Languages for Printer Independence

♦ Dial 2.0 Provides Software Developers Barbara Krasnoff 59
with Integrated Support System

♦ Rich Text Format Standard Makes Nancy Andrews 63

Microsoft QuickBASIC 4.0

COMPILEEDIT

RUN

Transferring Text Easier

DEBUG

phone phone

7 is an ar ray o '

po in te r s to array

po in te r s to •Mil... ..
September 1987: Vol. 2 No. 4 May 1988: Vol. 3 No. 3

Article Author Page
♦ SQLWindows Brings a Graphical User

Interface to SQL Database Applications
Craig Stinson 1

♦ The Graphics Programming Interface:
A Guide to OS/2 Presentation Spaces

Charles Petzold 9

♦ Using OS/2 Semaphores to Coordinate
Concurrent Threads of Execution

Kevin Ruddell 19

♦ Design Concepts and Considerations in
Building an OS/2 Dynamic-Link Library

Ross M. Greenberg 27

♦ New Compiler Technology Boosts
Microsoft® QuickBASIC 4.0 Productivity

Augie Hansen 49

♦ Debug Microsoft® Windows Programs
More Effectively with a Simple Utility

Kevin P. Welch 64

♦ An Examination of the Operating
Principles of the Microsoft Object Linker

Richard Wilton 73

Article Author Page
♦ Microsoft®Windows/386: Creating a

Virtual Machine Environment
Ray Duncan 1

♦ Programming in C the Fast and Easy
Way with Microsoft® QuickC™

Augie Hansen 15

♦ Character-Oriented Display Services
Using OS/2’s VIO Subsystem

Ray Duncan 23

♦ Dynamic Allocation Techniques for
Memory Management in C Programs

Steve Schustack 35

♦ CD ROM Technology Opens the Doors
on a New Software Market

Tony Rizzo 47

♦ MS-DOS® CD ROM Extensions:
A Standard PC Access Method

Tony Rizzo 54

♦ Microsoft® QuickBASIC: Everyone’s
First PC Language Gets Better

Dan Mick 63

November 1987: Vol. 2 No. 5
Article Author Page

♦ Microsoft® Excel for Windows: Meeting
the Demands of a New Generation

Jared Taylor 1

♦ Interprogram Communication Using
Windows’ Dynamic Data Exchange

Kevin P. Welch 13

♦ Designing for Windows: An Interview
with the Microsoft® Excel Developers

MSJ Interview 39

♦ A Strategy for Building and Debugging
Your First MS-DOS® Device Driver

Ross M. Greenberg 51

♦ Microsoft C Optimizing Compiler 5.0
Offers Improved Speed and Code Size

Augie Hansen 67

July 1988: Vol. 3 No. 4
Article Author Page

♦ DARWIN: Merrill Lynch Develops a
New Workstation Based on Windows 2.0

Tony Rizzo &
Karen Strauss

1

♦ CodeView for Windows Provides an
Interactive Debugging Environment

Paul Yao &
David Durant

13

♦ OS/2 Graphics Programming Interface:
An Introduction to Coordinate Spaces

Charles Petzold 23

♦ Microsoft® Macro Assembler Version 5.1
Simplifies Macros and Interfacing

Ross M. Greenberg 41

♦ Color Mixing Principles and How Color
Works in the Raster Video Model

Kevin P. Welch 49

♦ Creating User-Defined Controls for
Your Own Windows Applications

Kevin P. Welch 54

♦ SQL Server Brings Distributed DBMS
Technology for OS/2 Via LAN Manager

September 1988: Vol,

Marc Adler

. 3 No. 5

67

Article Author Page
♦ Bridge/386™ : A Tool for Integrating

Applications Under Windows/386
Matt Trask 1

♦ A Guide to Understanding Even the
Most Complex C Declarations

Greg Comeau 10

♦ Techniques for Debugging Multi-
thread OS/2 Programs with CodeView® 2.2

Charles Petzold 21

♦ Exchanging Data Between Applications
Using the Windows Clipboard

Kevin P. Welch 31

♦ Using Microsoft® C Version 5.1 to Write
Terminate-and-Stay-Resident Programs

Kaare Christian 47

♦ Customizing the Features of the
M Editor Using Macros and C Extensions

Leo N. Notenboom 59

♦ Dynamically Creating Dialog Boxes
Using New Windows 2.x Functions

November 1988: Vol.

Don Hasson

3 No. 6

73

Article Author Page
♦ Building a Device-Independent Video

Display I/O Library in Microsoft® C
JeffProsise 1

♦ Developing SQL Server Database
Applications Through DB-Library

Marc Adler 13

♦ OS/2 Protected-Mode Programming with
Forth, LISP, Modula-2, and BASIC

Andrew Schulman 25

♦ The High Memory Area: Addressing 64Kb
More Memory in Real Mode

Chip Anderson 53

♦ Developing and Debugging Embedded
Systems Applications

Y.P. Chien, Ph.D. 58

♦ C Scope and Linkage: The Keys to
Understanding Indentifier Accessibility

Greg Comeau 65

♦ Extending the Functions of the Windows
Clipboard with Scrapbook+

Kevin P. Welch 73

January 1988: Vol. 3 No. 1
Article Author Page

♦ Preparing for Presentation Manager:
Paradox Steps Up to Windows 2.0

Craig Stinson 1

♦ Converting Windows Applications for
Microsoft® OS/2 Presentation Manager

Michael Geary 9

♦ Programming Considerations in Porting
to Microsoft® XENIX ® System V/386

Martin Dunsmuir 31

♦ HEXCALC: An Instructive Pop-Up
Calculator for Microsoft® Windows

Charles Petzold 39

♦ Effectively Using Far and Huge Data
Pointers in Your Microsoft® C Programs

Kaare Christian 49

♦ EMS Support Improves Microsoft®
Windows 2.0 Application Performance

Paul Yao 57

♦ LIM EMS 4.0: A Definition for the Next
Generation of Expanded Memory

Marion Hansen &
John Driscoll

67

March 1988: Vol. 3 No. 2
Author Page
Tom Sato & 1
Lin F. Shaw
Charles Petzold 11

Alan Kessler 29

Ray Duncan 39

Richard Wilton 56

Tony Rizzo 63

Article
♦ Microsoft® Windows Adapts to the

Unique Needs of the Japanese Market
♦ Utilizing OS/2 Multithread Techniques

in Presentation Manager Applications
♦ OS/2 LAN Manager Provides a Platform

for Server-based Network Applications
♦ Writing OS/2 Bimodal Device Drivers:

An Examination of the DevHlp API
♦ Exploring the Structure and Contents

of the MS-DOS® Object Module Format
♦ A Guide to Program Editors, the

Developer’s Most Important Tool

0123456789ABCDEF 0123456789ABCDEF
43 4F 4D 53 50 45 43 3D 43 3A 5C 43 4F 4D 4D 41 COMSPEC=C : \COMMA
4E 44 2E 43 4F 4D 00 50 52 4F 4D 50 54 3D 24 70 ND . COM . PROMPT=$p
24 5F 24 64 20 20 20 24 74 24 68 24 68 24 68 24 $_$d $ thhh
68 24 68 24 68 20 24 71 24 71 24 67 00 50 41 54 hhh qq$g .PAT
48 3D 43 3A 5C 53 59 53 54 45 4D 3B 43 3A 5C 41 H=C : \SYSTEM; C: \A
53 4D 3B 43 3A 5C 57 53 3B 43 3A 5C 45 54 48 45 SM; C : \WS ; C : \ETHE
52 4E 45 54 3B 43 3A 5C 46 4F 52 54 48 5C 50 43 RNET ; C : \FORTH\PC
33 31 3B 00 00 01 00 43 3A 5C 46 4F 52 54 48 5C 31 ; C: \FORTH\
50 43 33 31 5C 46 4F 52 54 48 2E 43 4F 4D 00 PC31 \FORTH . COM .

0000
0010
0020
0030
0040
0050
0060
0070
0080

May 1989: Vol. 4 No. 3

January 1989: Vol. 4 No. 1
Article Author Page

♦ Quotron® Uses Windows to Develop New Tony Rizzo & 1
Market Analysis Tools for Real-Time Data Karen Strauss

♦ Porting Apple® Macintosh® Applications Andrew Schulman 11
to the Microsoft® Windows Environment & Ray Valdes

♦ Developing Applications with Common Michael Geary 41
Source Code for Multiple Environments

♦ Using the OS/2 Environment to Develop Richard Hale Shaw 77
DOS and OS/2 Applications

March 1989: Vol. 4 No. 2
Article Author Page

♦ Exploring Vector Fonts with the OS/2 Charles Petzold 1
Graphics Programming Interface

♦ BASIC as a Professional Programming MSJ Interview 15
Language: An Interview with Ethan Winer

♦ Organizing Data in Your C Program with Greg Comeau 23
Structures, Unions, and Typedefs

♦ Whitewater’s Actor®: An Introduction to ZackUrlocker 33
Object-Oriented Programming Concepts

♦ MDI: An Emerging Standard for Kevin P. Welch 45
Manipulating Document Windows

♦ Planning and Writing a Multithreaded Richard Hale Shaw 63
OS/2 Program with Microsoft C

Author Page
Susan Franklin & 1
Tony Peters
Marc Adler 17

Richard Hale Shaw 25

Article
♦ A Technical Study of Dynamic Data

Exchange Under Presentation Manager
♦ Creating a Virtual Memory Manager to

Handle More Data in Your Applications
♦ Using the OS/2 Video I/O Subsystem to

Create Appealing Visual Interfaces
♦ Investigating the Debugging Registers of

the Intel 386 Microprocessor
♦ Strategies for Building and Using OS/2

Run-Time Dynamic-Link Libraries
♦ How the 8259A Programmable Interrupt

Controller Manages External I/O Devices
Jim Kyle & 59
Chip Rabinowitz

♦ Advanced Techniques for Using Structures Greg Comeau 69
and Unions In Your C Code

Marion Hansen & 39
Nick Stuecklen
Ross M.Greenberg 51

List continues on next page

Issue Qty Price Total

Your Name
Address
City State ZIP
Phone No. () __________________________________

Shipping Address (if different)

Your Name
Address
City State ZIP

October 1986: Vol. 1 No.l*
December 1986: Vol. 1 No.2
March 1987: Vol. 2 No.l*
May 1987: Vol. 2 No.2
July 1987: Vol. 2 No.3
September 1987: Vol. 2 No.4
November 1987: Vol. 2 No.5
January 1988: Vol. 3 No.l*
March 1988: Vol. 3 No.2
May 1988: Vol. 3 No.3
July 1988: Vol. 3 No.4
September 1988: Vol. 3 No.5
November 1988: Vol. 3 No.6
January 1989: Vol. 4 No.l
March 1989: Vol. 4 No.2
May 1989: Vol. 4 No.3*
July 1989: Vol. 4 No. 4
September 1989: Vol. 4 No. 5

Subtotal
Shipping

f$1.50 U.S., $5.00 foreign/magazinej
Grand total

Please fold in half with our return address on the
outside, tape closed (PLEASE DO NOT STAPLE) and
drop in the mail, or enclose in your own envelope.

All orders are shipped via U.S. mail, unless
otherwise requested.

Pricing: the more you buy, the less
you pay for each.
Qty
I-5
6-10
II- 15
>15

Price each
$5.00
$4.50
$4.00
$3.50

Complete volumes
are available at

$24 each

Payment Method
Check enclosed
VISA MasterCard
American Express

Card #
Exp Date
Signature
Shipping Method

US Post Office UPS

Very limited supply.

July 1989: Vol. 4 No. 4 September 1989: Vol. 4 No. 5
Article Author F*age

♦ Circumventing DOS Program Memory
Constraints with an Overlay Manager

Dan Mick 1

♦ Extended Memory Specifications 2.x: Chip Anderson 17
Taking Advantage of the 80286 Proctected Mode

♦ Exploring the Key Functions of the OS/2
Keyboard and Mouse Subsystems Richard Hale Shaw 27

♦ Everything You Always Wanted to Know
About the MS-DOS® EXEC Function...

Ray Duncan 39

♦ Customizing a Microsoft® Windows
Dialog Box with New Control Classes

Gregg L. Spaulding 51

♦ Techniques for Calling OS/2 System
Services from BASIC Programs

Ethan Winer 61

♦ Pointers 101: Understanding and
Using Pointers in the C Language

Greg Comeau 73

Article Author Page
♦ Design Goals and Implementation of the

New High Performance File System
Ray Duncan 1

♦ Getting the Most from Expanded Memory
with an EMS Function Library

Douglas Boling 15

♦ A Complete Guide to OS/2 Interprocess
Communications and Device Monitors

Richard Hale Shaw 35

♦ Find Files Under Presentation Manager
and Windows™ with a Handy Utility

Kevin P. Welch 61

♦ Writing Faster Graphics Programs by
Using Offscreen Bitmap Manipulation

Kevin Rudell 69

Stymied by something in C? Puzzled by a point in Presentation Manager? Want
to bone up on OS/2? Don’t waste your time...someone may have figured it out
already. Order your back issues of Microsoft Systems Journal today!

N
O

 P
O

ST
AG

E
N

EC
ES

SA
R

Y
IF

M
A

IL
E

D
 I

N
 T

H
E

U
N

IT
E

D
 S

TA
TE

S

B
U

S
IN

E
S

S
 R

E
P

LY

M
A

IL
F

IR
S

T

C
L

A
S

S

P
E

R
M

IT

N
O

.
6

0
3

M

A
R

IO
N

,
O

H

U
S

A

M
IC

R
O

S
O

FT
 S

Y
S

T
E

M
S

 J
O

U
R

N
A

L
66

6
Th

ird
 A

ve
nu

e,
 1

6t
h

Fl
oo

r

N
ew

 Y
or

k,
 N

ew
 Y

or
k

10
01

7

PO
ST

AG
E

W
IL

L
BE

 P
AI

D
 B

Y
AD

D
R

ES
SE

E

Figure 5A: Using the Unary * Operator

41
We know that the associa-

tivity of the ++ operator from the
operator precedence table chart
means “do not perform the in-
crement until after the (simple)
expression has been evaluated”
because it is a post-increment
operator. Since the ++ imme-
diately follows p, it's p that's
being incremented, not the
contents of the object p points to.

The simple expression refer-
red to in the preceding para-
graph is *p. However, like the
case presented in the previous
sections, we don’t assign or use
the value of *p. It is discarded—
*p goes nowhere and then p is
incremented afterwards. This is
equivalent to having coded the
following:

*p, p++;

This syntax is a valid C
expression and a valid C state-
ment. It demonstrates that we
wouldn’t normally want to write
code this way. For all practical
purposes, line 20 increments
only p; the implication is that it
wasn’t supposed to be written
that way. We should be cautious
of such situations, because it’s
too easy to code a construct such
as *p++ without stopping for a
second to see what is actually
happening, especially since the
compiler is not going to object.

Some t imes , however , it
makes sense to write code that
uses the value of this kind of
expression. For example, the
assignment to c in the following
code is legitimate and powerful:

char *p;
char c;

p = • ..;
c = *p++;

Statements like the assign-
ment to c present a style issue
because such coding practices
can create hard-to-read code.
Instead you could write the
assignment on two lines:

c = *p;

main()
<

char c = ’a ’;
char d * ’a ’;
/* */
char *p;
char *p2;

/* */
p ■ fic;
p2 = p;
p » fid;
/* ♦/
printf("%c\n", *p);
*p2 = ’A';

}

Figure 5s: Memory Map of Figure 5A

Memory map before executing *p2 = ’A’:

1000 'a' — Z ‘c7

1001 'z' r d 7

1002

1010 1001 — / * p7

1014 1000 — /*p2 7

1018

Memory map after executing *p2 = 'A’:

1000 ’A’ _____

1001 'z' -1

1002

1010 1001 —

1014 1000 —

1018

Such constructs, however, are
idioms of C, so whether or not
you should use them is simply a
matter of style.

Next Case
In line 22, (*p)++ might incre-

ment the contents of p or incre-
ment the contents of the object to
which p points.

NOVEMBER 1989

MICROSOFT
SYSTEMS
JOURNAL

1 Figure 6: PTRINC.C Source Code |

1 finclude "debug.h"
2
3 /♦
4 * ptrinc.c
5 */
6
7 main()
8 {
9 char *p;

10 char *origp;
11
12 p = "abcdefghijk”;
13 prints(p);
14 origp = p;
15 prints(origp);
16
17 printp(p);
18 p++;
19 printp(p);
20 *p++;
21 printp(p);
22 (*p)++;
23 printp(p);
24 *++p;
25 printp(p);
26 printc(*p);
27 printc(*(p++));
28 printc(*p);
29 printp(p);
30
31 prints(p);
32 prints(origp);
33 }

since a standalone statement
such as i++ could be rewritten as
++i. If the result of these state-
ments were to be used, however,
this would not be true since it
makes a difference where ++ is
placed, according to the prece-
dence table. For example, the
expression ++(*p) is evaluated
and then incremented, but the
expression ++*p is incremented
first and then evaluated.

It may not be clear whether the
++ on line 24 applies to the * or
the p. It can’t apply to the *
without the introduction of
some other operand, like the
++*p above, which is mentioned
as a syntax level reference since
the two statements have differ-
ent meanings. As with all these
examples, the operator prece-
dence table provides the key.
Since the ++ binds with the p and
is a pre-increment, the compiler
will not let the dereference occur
without first performing the
increment. Therefore, line 24
could have been coded

p++, *p;

or:
++p, *p;

Much of what is true about
line 20 is also true of this state-
ment. The effect of 24 is that p is
incremented. Line 25 confirms
this. On line 26, we simply
check to make sure we know
where we are.

Turmoil strikes again on line
27 and this time we have two sets
of problems. First we are going
to use the value of the expression
instead of ignoring it as we did in
earlier statements. We are left
with:

*(?++)

Clearly, p will be incremented,
but what’s not clear is when this
will happen. At first glance, we
would say that it’s the same as

p++, *p

which is the same thing line 24
mapped into because expres-

42

Since the ++ is outside the
parentheses, it is doubtful that
they modify p. Of course,
(*p)++ is a legal expression that
modifies the contents of p and
++ occurs outside the paren-
theses in that case. Also, if we
envision a case such as

being at some point equivalent
to

WE KNOW THAT THE
ASSOCIATIVITY OF THE ++

OPERATOR FROM THE
OPERATOR PRECEDENCE

TABLE MEANS “DO NOT
PERFORM THE INCREMENT
UNTIL AFTER THE (SIMPLE)

EXPRESSION HAS BEEN
EVALUATED” BECAUSE IT IS

A POST-INCREMENT
OPERATOR. SINCE THE ++
IMMEDIATELY FOLLOWS P,

IT'S P THAT'S BEING
INCREMENTED, NOT THE

CONTENTS OF THE OBJECT
P POINTS TO.

(i) = (i) + 1;

line 22 could be interpreted as:
(★p) = (*p) + 1;

Therefore line 22 increments the
contents of the object to which p
points. Case c wasn’t worth
considering since there is only
one ++ operator in the state-
ment. Figure 7 shows that p has
not changed when we print it on
line 23. What has changed is that
we’ve added 1 to c; under the
ASCII character set this changes
the c to a d. Line 22 could also
have been written as either of the
following:

++(*P)
++*p

NOVEMBER 1989

Figure 7: Map and ’’State Diagram" of PTRINC Code Starting with Line 12
sions in parentheses must be
performed first. We’d be wrong.
The statement actually maps to

*p, p++

which is the same as line 20. The
explanation of this is that p++
constitutes a complete subex-
pression involving a long value
no different from what
while ((c = getchar()) != EOF)

does in its assignments to c. In
this case, the subexpression has
a side effect involving a post
operator. We know that the side
effect will occur sometime
during that statement and before
the next statement in this
situation. The operator prece-
dence table clarifies the
situation by showing that the
post ++ operator and the unary *
operator are always right-
associative. This means that if
we look at the reverse situation
of *p++, it must be interpreted as
*(p++) rather than (*p)++.
Therefore, the parentheses on
line 27 only order the p, not the
p++, since the increment is per-
formed afterwards.

Line 27 has a second problem.
We can see that when line 27 is
output and fed from the C pre-
processor into the C parser it
looks something like this:

fprintf((&_iob[2]),
"*(p++)=%d/%c\n", *(p++),
*(P++));

(This code should all be on one
line; it is broken here due to
space considerations—Ed.)

Notice that we have ended up
with two *(p++) expressions—a
statement containing a macro
with a side effect. This is a very
subtle problem. The decimal
value of the character printed by
the first *(p++) in this example
may actually be different from
the character value we expected
because we still do not know
when the p++’s will occur. On
my UNIX machine, the p’s were
incremented in the reverse of the
order shown, probably because

Assume that p and origp are pointers each 4 bytes in length located at addresses 1200
and 1210, respectively.
Line No. Address

1
2
3
5

’b’

1
2
3

1
2
3
6
c ’

1
2
3
8

d’ 'e*

1
2
3

1
2
3
9

'f *

1
2

1
2

1
2

1
22 2

0
9’

2
•i’

3
’j'

5 output
’\0' --->elaments of

array
12 'h' ’k’

p points at the beginning of array
13 p=”abcdefghijk"

1
2

1
2
3
5

a' ’b’

1
2
3

1
2
3
6

'c'

1
2
3
7

•d’

1
2
3
8

•e’ 'f

2
3
9

1
2

1
2

1
2

1
22

0
g’

1
’h'

2 3
j

4
•k’

5
’\0’14

p points at the beginning of array

origp points at the beginning of array
15

origp*"abodefghi jk
17 p*1234

1 1] 1 1 1 1 i 1 1 1 1
2 2 2► 2 2 2 2 2 2 2 2 2
3 3 1 3 3 3 4 4 4 4 4 4
4 5 > 7 8 9 0 1 2 3 4 5

18 •b’

t

’c' ’d’ e ’f ’ 'g' ’h' 'i’ ’j’ •k’ ’\0

origp
1
P

19
1 1 1 1 1 1 i 1 1 1 1 1
2 2 2! 2 2 2 2 2 2 2 2 2
3 3 31 3 3 3 4 4 4 4 4 4
4 5 i 7 8 9 0 1 2 3 4 5

20 ’b* ’c’ ’d'
h

e •f ’ •g’ •h’ •i’ 1j' •k’ ’\0

origp I
1>

21
1 1 1 i 1 1 1 1 1 1 1 1
2 2 2! 2 2 2 2 2 2 2 2 2
3 3 31 3 3 3 4 4 4 4 4 4
4 5 €i 7 8 9 0 1 2 3 4 5

22 •b' •d’ ’d' e ’ ’ f ' ’g' ’h' 'i' ’j’ ’k' ’\0

1
origp

I
E
1 .
►

23
1 1 1 1 1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2 2 2 2 2
3 3 3; 3 3 3 4 4 4 4 4 4
4 5 6 7 8 9 0 1 2 3 4 5

24 ’b’ ’d' ’d'

t

e ’f ’ ’g’ ’h' ’i’ ’j’ *k’ '\0

origp
1
P

25
26

1 1 1 1 1 1 i 1 1 1 1 1
2 2 2 2 2 2 2 2 2 2 2 2
3 3 3 3 3 3 4 4 4 4 4 4
4 5 6 7 8 9 0 1 2 3 4 5

27 'a ’ b’ •d’ 'd' 'e ’ •f ’ ’g’ ’h’ ’i’ ’j’ ’k’ '\0

p-1235

p=1236

p=1236

p«1237
*p=100/d

origp P

NOVEMBER 1989

MICROSOFT
SYSTEMS
JOURNAL

'b' 'd' 'd'

t t

’h’ ’1’ ’ j’ •k’ ’\0»

27
28
29
31
32

1
origp

1
P

*(p++)=101/d
*p«102/f
p«1239
p="fghijk"
origp="abddefghi jk"

of the way the arguments on the
stack were put. The value for the
d is correct, but the decimal
value 101 represents an e (see
Figure 7).

Line 28 verifies that there
were two increments on my
machine. There might not have
been since we cannot predict
whether both increments start
using the same value of p or
whether one is based on the
other. Lines 29, 31, and 32 are
self-explanatory except for the
third character of the array,
which is now a d rather than a c.
This change occurred in line 22.

Summary
This article has introduced

and explained many pointer der-
ivations and shown some com-
mon and often unexpected side
effects of using pointers in your
code. A solid understanding of
how pointers work, and a
willingness to examine even
simple pointer constructions for
hidden errors, will help you to
write concise, fast code.

44

Figure 8: Sequence Points

Sequence Point The point at which all side effects of previous evaluations shall be
complete and no side effects of subsequent evaluations shall have taken place.

Agreement Point The sequence point for some object or class ofobjects at which the value
of the object(s) in the real implementation must agree with the value prescribed by the
abstract machine.

The sequence points of a C program are:

• at the call to a function after the arguments to the function have been evaluated
• at the end of the first operand of the following operators:

logical and: &&
logical or: II
conditional: ?
comma: ,

• at the end of a full expression such as:
an initializer
the expression in an expression statement
the controlling expression of a selection statement (if or switch)
the controlling expression of an iteration statement (while, do, or for)
the expression in a return statement.

T HE OPERATOR
PRECEDENCE TABLE SHOWS

THAT THE POST ++
OPERATOR AND THE

UNARY * OPERATOR ARE
ALWAYS RIGHT-

ASSOCIATIVE. IF WE LOOK AT
THE REVERSE OF *P++, IT

MUST BE INTERPRETED AS
*(P++) RATHER THAN (*P)++.

THEREFORE, THE
PARENTHESES ORDER ONLY

THEP, NOT THEP++ .

NOVEMBER 1989

Figure A: DEBUG.H
/★ debug, h */

#ifndef DEBUG_H
#def ine DEBUG_H

/* Depending upon which compiler you have, STRINGIZING should be set to
determine if #v syntax is allowed. For some compilers, this setting may not
be obvious since STDC may not be supported or may be set to an
inappropriate value . */

#if STDC == 1
#define STRINGIZING 0
#else
#define STRINGIZING 1 /* 1 means compiler can use #v syntax. You may need

to swap this line with the other one */
#end if

#include <stdio.h>

#ifndef SUBTRACE
#def ine SUBSTART(x)
#def ine SUBEND(x)
#else
#if STRINGIZING == 1
#def ine SUBSTART(func) fprintf(stderr, "%s()ing\n", #func)
#def ine SUBEND(func) fprintf(stderr, "%s()ed\n", #func)
#else
#de fine SUBSTART(func) fprintf(stderr, "%s () ing\n", "func")
#def ine SUBEND(func) fprintf (stderr, "%s()ed\n”, "func")
#endif
#endif

#if STRINGIZING == 1
#def ine prints (str) fprintf(stderr, #str "='%s'\n", str)
#def ine printd (dec) fprintf (stderr, #dec"-%d\n", dec)
#def ine printld(Idee) fprintf (stderr, #ldec "=%ld\n", (long)Idee)
#define printp (p) fprintf(stderr, #p "=%p\n", p)
#define printc(ch) fprintf(stderr, #ch "=%d/%c\n", ch, ch)
/* printc without a side effect is properly written as:

#def ine printc (ch) (c h a r c = (ch) ; fprintf(stderr, #ch "=%d/%c\n",
c, c) ; } */

#else
#def ine prints (str) fprintf(stderr, "str='%s'\n", str)
#def ine printd(dec) fprintf (stderr, "dec=%d\n", dec)
#def ine printld(Idee) fprintf(stderr, "ldec=%ld\n", (long)Idee)
#define printp (p) fprintf (stderr, "p=%p\n", p)
#def ine printc (ch) fprintf (stderr, "ch=%d/%c\n", ch, ch)
/* printc without a side effect is properly written as:

#def ine printc (ch) (c h a r c = (ch) ; fprintf (stderr, "ch=%d/%c\n",
c, c); }*/

#endif

#def ine PRINTSUBfprintf(stderr, "%s:", FILE)

#ifndef DEBUGL1
#define DEBUG1(al)
#define DEBUG2 (al, a2)
#define DEBUG3 (al, a2, a3)
#def ine DEBUG4 (al, a2, a3, a4)
#def ine DEBUGS (al, a2, a3, a4, a5)
#def ine DEBUG6 (al , a2, a3, a4, a5, a6)
#define DEBUGS(str)
#define DEBUGD(d)
#define DEBUGLD(Id)
#define DEBUGC(c)
#def ine DEBUG?(p)
#define DEBUGCALL(func)
#else
#ifdef DEBUGF
#define DEBUG1(al) PRINTSUB, fprintf(stderr, "%s", al)
#define DEBUG2(al,a2) PRINTSUB, fprintf(stderr, al, a2)
#define DEBUG3(al, a2, a3) PRINTSUB, fprintf(stderr, al, a2, a3)
#define DEBUG4(al, a2, a3, a4) PRINTSUB, fprintf(stderr, al, a2, a3, a4)
#def ine DEBUGS(al, a2, a3, a4, a5) PRINTSUB, fprintf(stderr, al, a2, a3, a4, a5)
#def ine DEBUG6(al, a2, a3, a4, a5, a6) PRINTSUB, fprintf(stderr, al, a2, a3, a4, a5, a6)
#define DEBUGS(str)PRINTSUB, prints(str)

45In-Line
C Program
Debugging

DEBUG.H is a header
file that performs in-line pro-
gram debugging. An example of
DEBUG.H (see Figure A) is
shown in TESTDEBUG.C (see
F igure B). TESTDEBUG.C
includes DEBUG.H in a source
file and uses it and three macro
variables to control the output.
One macro controls the occur-
rence of any debug output,
another controls the printing of
subroutine entry and exit points,
and the third controls the
printing of subroutine names
with the respective debugging
information.

The output shown for
TESTDEBUG.C demonstrates
the advantage of using
DEBUG.H, which is that the
argument to the print* and
DEBUG* macros allows the
code to be less tedious and more
easily read (assuming the debug
information is to be left in). In
this program, a statement such
as

printd(somevariable)

produces
somevariable = the value of

somevariable

as its output. This avoids having
to code fprintf(stderr, “i=%d\n”,
i); or a similar statement when-
ever you want to see what value
a variable holds. For instance,
line 16 in TESTDEBUG.C
produces i = 5. The expanded
form can become a nuisance,
especially with more compli-
cated variables such as a mem-
ber of an element of an array of
structures. As in DEBUG.H,
there are five categories of
output statements controlled by
the last character of the prints

NOVEMBER 1989

MICROSOFT
SYSTEMS
JOURNAL

Figure A
statement. (You can add more.)
Use s to print the value of a
string, d to print an int or short, Id
to print a long, p to print a poin-
ter, and c to print a character.

Also note that DEBUG.H
contains a group of macros, the
printx macros, which you can
use to print unconditionally.
This is in contrast to the
DEBUG* macros which have an
effect on your code only if you
define DEBUGL1 before you
include DEBUG.H. Therefore,
TESTDEBUG.C will always
print the value of i, but whether it
prints any of the other output,
including the subroutine trace,
depends upon DEBUGL1 being
an active macro.

Space does not permit us to
elaborate upon the internal
workings of DEBUG.H.
Remember that for the purposes
of this article, print?(var);
a l l ows you to p roduce
var = value. TESTDEBUG.C
should be sufficient to demon-
strate the interface to
DEBUG.H.

46 ♦define DEBUGD(dec)PRINTSUB, printd(dec)
♦define DEBUGLD(Id)PRINTSUB, printId(Idee)
♦define DEBUGC(c)PRINTSUB, printc(c)
♦define DEBUGP(p)PRINTSUB, printp(p)
♦define DEBUGCALL(func) PRINTSUB, func
♦else
♦define DEBUG1(al) fprintf(stderr, "%s”, al)
♦define DEBUG2(al, a2) fprintf(stderr, al, a2)
♦define DEBUG3(al, a2, a3) fprintf(stderr, al, a2, a3)
♦define DEBUG4(al, a2, a3, a4) fprintf(stderr, al, a2, a3, a4)
♦define DEBUGS(al, a2, a3, a4, a5) fprintf(stderr, al, a2, a3, a4, a5)
♦define DEBUGS(al, a2, a3, a4, a5, a6) \

fprintf(stderr, al, a2, a3, a4, a5, aS)
♦define DEBUGS(str)prints(str)
♦define DEBUGD(dec)printd(dec)
♦define DEBUGLD(Id)printId(Idee)
♦define DEBUGC(c)printc(c);
♦define DEBUGP(p)printp(p)
♦define DEBUGCALL(func) func
♦endif
♦endif

♦endif

Figure B: TESTDEBUG.C

♦define DEBUGL1
♦define DEBUGF
♦define SUBTRACE
♦include "debug.h"

/* TESTDEBUG.C */

main()
(
int i = 5;
int *pi « &i;
char *s = "string”;

SUBSTART(main);

printd(i);
DEBUGD(i);
DEBUGS(s);
DEBUGP(Si);
DEBUGP(pi);

SUBEND(main);
}

When executed, this program prints:

main()ing
i = 5
testdebug.c:i « 5
testdebug.c:s = 'string ’
testdebug.c:Si ■ 0005:0FB8
testdebug.c:pi = 0005:0FB8
main()ed

NOVEMBER 1989

Integrating Subsystems and
Interprocess Communication
in an OS/2 Application

47

Richard Hale Shaw

Q rogramming in the OS/2 systems is
always a challenging and interesting experience.
One reason is that the OS/2 environment provides a
platform for integrated application development
that is richer than its rivals and outperforms them.

Another is that the OS/2 application programming interface (API) is
a robust set of functions that makes even the most complicated
applications much easier to design, develop, test, and complete.

The intent of this series of OS/2 articles (MSJ Vol. 4, Nos. 1
through 6) has been twofold. First, its purpose was to introduce you
to OS/2 programming, showing you how to write multithreaded
applications, use the Vio, Kbd, and Mou subsystems, and allow
multiple OS/2 applications to communicate via interprocess com-
munication (IPC). This final article presents an application that
integrates all of those aims. Second, the series intended to give you
the OS/2 kernel programming knowledge needed to program for
OS/2 Presentation Manager (hereafter PM). Good PM pro-
gramming requires a thorough understanding of three elements: the
OS/2 multithreaded application programming environment and
application programming interface (API); PM windowing facilities
(and their associated API functions); and PM event-driven,
message-based architecture (a superset of the architecture of the
Microsoft® Windows™ environment).

The first five articles in this series have provided an overview of
the OS/2 API. This final article discusses how to use OS/2 IPC to
implement an event-driven, message-based queue that you can use
to construct applications whose architecture is similar to the
architecture of PM.

Directory Information
The programs in this article prepare you for PM programming.

They assume that you are familiar with how to work with multiple
threads, the various subsystems, and IPC. The programs integrate
many (if not all) of the concepts presented in the previous articles in
the series. They are also practical; that is, they are either useful in
their own right or can be easily modified to fill a particular need.

The directory information (DI) application presented in this
article consists of three programs built on a client-server architec-
ture. One, a directory server, gives disk and directory information to
any client program that requests it, provided the client knows how
to initiate the request and use the results. Each of the client

Richard Hale Shaw, a writer who contributes to various computer magazines,
is the author of an upcoming book on OS/2 programming.

Q H E DI CLIENT-SERVER

ARCHITECTURE IS

IMPLEMENTED USING IPC.

WHEN THE SERVER STARTS,

IT OPENS A QUEUE THAT IS

KNOWN TO THE DI FUNCTION

IN A CLIENT PROGRAM. A

CLIENT DI FUNCTION PASSES

REQUESTS FOR DIRECTORY

INFORMATION TO THE

SERVER VIA THIS QUEUE,

AND THE SERVER CREATES A

THREAD TO SERVICE THE

REQUEST.

NOVEMBER 1989

MICROSOFT
SYSTEMS
JOURNAL

Figure 1: DISIMPLE.C
#define INCL_DOS

#include<os2.h>
#include<stdio.h>
#include"di.h"

return the results in a form that
makes it easy for other DI
functions to sort them, retrieve
them, and make use of the
information.

The DI client-server architec-
ture is implemented using OS/2
interprocess communication.
When you start the DI server, it
opens a queue that is known to
the DI functions bound into a
client program. A client DI
function can pass requests for
directory information to the
server via this queue, and the
server will create a thread to
service the request. The server
can manage up to 20 threads at a
time, making it easy for it to
handle multiple demands for
directory information. Each
server thread receives a request
packet that is sent via the queue
from the client. (The queue
actually carries a pointer to a
shared memory block that
contains the request.) This
request packet includes all the
information necessary for the
server to process the request, as
well as a pointer to a work area
segment (also in shared mem-
ory) where the server thread
must place the results. When the
server thread has finished its
task, it clears a semaphore in the
request header, which signals
the client that the thread’s task is
complete. Then the client can
use other DI functions to
retrieve the results of the
request.

With DI functions, a client
program can prepare a request
by making one or more calls to
the DiMakeRequest function.
When the request has been pre-
pared, the client can send it to the
server using the DiSendRequest
function, which will return
when the request is complete.
(You could put the call to this
function in a separate thread, so
that the application can continue
while the server fulfills the
request.) When the thread
calling DiSendRequest returns,

48
void main(int argc, char **argv);

void main(int argc, char **argv)
{

PVOID requesthdl = NULL, resulthdl;
□SHORT i, numresults;
char filename[40];

if(argc »= 2)
{

printf("Usage: disimple filespec\n");
DosExit(EXIT_PROCESS, 0);
}

DiMakeRequest (&requesthdl, argv[1], 0);
DiSendRequest (requesthdl);
DiGetResultHdl(requesthdl, 0,&numresults,&resulthdl);

for(i = 0; i < numresults; i++)
{
if(i)

DiGetNextResult(resulthdl, filename);
else
DiGetFirstResult (resulthdl, filename);

printf("\t%s\n", filename);
)

DiDestroyRequest (&requesthdl);
}

applications uses a set of
function calls to generate and
process a request for directory
information. The function calls,
combined with the server, are a
high-level interface to the OS/2
DosFindFirst function; this
interface is simple and easy to
use, it hides the complexities of
finding files and managing
memory, and it avoids having to
make multiple calls to the
DosFindNext function. The ser-
ver program can also be modi-
fied to run on a network, where it
could be enabled to display
information about directories
that a program running on a node
might not be able to access. And,
although I didn’t take this step,
the client functions can be
placed in an OS/2 dynamic-link
library (DLL), where they can
be used by more than one pro-
gram at a time even though they
are only loaded once by OS/21.

Two kinds of client programs
are presented here. One is a
simple command-line directory

utility that I ported to OS/2 and
modified to use the directory
information functions. The
other is a directory program for
end users that employs multiple
threads to manage input and
output and lets the user work
with the keyboard and mouse.

Client-Server Architecture
The DI functions implement a

classic client-server relation-
ship. If, for example, the client
asks “C:\OS2*.* ”, the server
will respond with a list of all the
files that meet that specification.
The client can request the
expansion of multiple filespecs
at a time. A filespec may consist
of a full or partial path and a
standard MS-DOS® operating
system file specification, in-
cluding wildcard characters. If a
path is not included, the client’s
current directory is assumed;
each filespec can have a
different path. Each filespec can
also have a unique matching
attribute value. The server will

NOVEMBER 1989

Figure 2: REQUESTHEADER Structure
the client can retrieve the
request information by calling
several different functions that
are described later in the article.
Finally, the request information
should be released with
DiDestroyRequest. An example
of the code required to write
such a client program is shown
in the file DISIMPLE.C (see
Figure 1).

DI Data Structures
DI functions use the two data

structures shown in Figures 2
and 3. (Full source code for the
figures in this article can be
downloaded from any MSJ
bulletin board—Ed.) Figure 2,
REQUESTHEADER, is the
primary structure and contains
the information the server will
need to process and complete
the request. This information is
stored in a segment that is
known as the request header
segment. This segment is
allocated by the first call to
DiMakeRequest (which also
allocates the work segment).
The information in the
REQUESTHEADER structure
includes the following:

• the client’s selector to the work
segment

• the server’s selector to the
request header segment and a
server selector and pointer to
the work segment

• the handle of the server’s
queue and the server’s process
ID (PID)

• the total size of the header and
work segments

• the number of filespecs that
make up the request

• the number of results found by
the server

• a RAM semaphore that blocks
the client thread calling
DiSendRequest until the sema-
phore is cleared by the server

• other pointers used by either
the client or server

The header also includes an
array of one or more structures

typedef struct _requestheader
{
ULONG RAMsem;
SEL rselector:

/*
/★

RAM semaphore for client
Client selector to results

*/
★ / 49

HQUEUE qhandle; /* Handle to server's queue */
PID qowner; /* PID of server (queue owner) */
VOID FAR *resultptr; /* Server pointer to work area */
SEL serverhsel; /* Server selector to header */
SEL serverwsel; /* Server selector to results */
PCH currentdir; /* Client's dir in work area */
PCH requestspec; /* Next part of work area */
USHORT size; /* Current size header segment */
USHORT resultsize; /* New size of result segment */
USHORT totalresults; /* Total results found */
USHORT numRequests; /* Number of requests being made */
DIRINFORESULT resultArray[1]; /* Request structures */
} REQUESTHEADER;

typedef REQUESTHEADER FAR *PREQUESTHEADER;

Figure 3: DIRINFORESULT Structure
typedef struct dirinforesult

{
USHORT attributes; /*
PCH filespec; /*
PCH currentdir; /*
PFILEFINDBUF firstfile; /*
PFILEFINDBUF nextfile; /*
USHORT numfound; /*
USHORT errorval; /*
struct _dirinforesult *next; /*
} DIRINFORESULT;

typedef DIRINFORESULT FAR *PDIRINFORESULT;

Attributes this request */
File spec to use */
Current dir this request */
First result */
Next result */
Number of files found */
Error value returned */
Related structure if found */

the server for the filespec
• a pointer used by the func-

tions that retrieve the results
from the work segment

Creating a DI Request
An application program

should call DiMakeRequest to
create a directory information
request. The DiMakeRequest
function is part of DI.C (see
Figure 4). DiMakeRequest re-
quires the address of a variable
that will be a handle to the
request, the complete path and
filespec that the server will
expand, and the attributes that
the server should use when
expanding the filespec. The
handle is of type PVOID and
should be initialized to NULL
before the first call to
DiMakeRequest, so that the
function will create a new
request. Otherwise, the function
will assume that the handle
refers to an existing request.
You can add filespecs to the
request by repeated calls to
DiMakeRequest with the same

of type DIRINFORESULT, one
for every filespec contained in
the request (see Figure 3). One of
these structures is automatically
included in a header segment
when the segment is allocated
by DiMakeRequest. An appli-
cation can subsequently call
DiMakeRequest for each
filespec to be included in the
request. When a new filespec is
included, DiMakeRequest re-
sizes the header segment (using
DosReallocSeg) to include
space for an add i t i ona l
DIRINFORESULT structure.

Each DIRINFORESULT
structure contains the following
information about a particular
filespec:

• the filespec for which to
search

• the path to the filespec
• the attributes to use when

searching for files
• a pointer to the first file that

the server finds matching the
filespec

• the number of files found by

NOVEMBER 19X9

MICROSOFT
SYSTEMS
JOURNAL

Figure 4: DLC Source Code
handle before you call
DiSendRequest.

When you are ready to send a
request to the server, your
app l i ca t i on shou ld cal l
DiSendRequest. Remember
that this call will block until the
server has finished processing
the request, so you should place
this call in a separate thread if
you need to avoid blocking the
main thread of a client applica-
tion. You should either call
DiDestroyRequest before re-
using the handle or use a
different handle for subsequent
requests.

DiMakeRequest assumes that
the server is running and has
created its queue; otherwise, the
function will wait until the
server’s queue has been created.
Once the server has created its
queue, DiMakeRequest will
open it using DosOpenQueue,
which returns a queue handle
and the PID of the server.
DiMakeRequest will use
DosGiveSeg and the server’s
PID to enable the work and
header segments to be shared
with the server. DiMakeRequest
will add each filespec to the
request, expand it to include a
full path, and create a new
DIRINFORESULT structure
for each filespec. The details of
this process and how the DI
functions work with the
DosFindFirst OS/2 function are
discussed in the sidebar
“DosFindFirst and DI Memory
Management.”

Once an application has
finished adding filespecs to a
r eques t , it can then use
DiSendRequest to send the
request to the server (see Figure
2). The DiSendRequest function
does some housekeeping, writes
the request to the queue, then
waits until the server has com-
pleted its task and clears the
header semaphore.

DISERVER Program
The DISERVER program

50 ♦def ine
♦define

INCL_DOS
INCL ERRORS

#include<os2.h>
#include<mt\stdio.h>
#include<mt\string.h>
#include<mt\stdlib.h>
#include<mt\ctype.h>
♦include"errexit.h"

♦define DICODE
♦include"di.h"

♦define lastchar (str) (str [strlen(str)-1])

dilnit (PID *qowner, HQUEUE *qhandle);
adddriveletter(PCH *filespecs, USHORT driven©);

makefpath (char *org,char *result,char *currentpath,
USHORT currentdrive);

getdriveinfo(USHORT *currentdrive, char *currentpath,

USHORT *psize);

USHORT diallocseg(USHORT size, SEL *oursel,PID other, SEL *othersel);

void convertptr(VOID **ptr, SEL newsel);

void
void
void

void

/* DiMakeRequest
This function creates or adds to an existing directory information

request. A new request is created if the pointer (hptr) is set to

NULL. Note that this is the pointer whose address is passed to the

function. The filespec is a full path and file specification with

optional wildcards. The attribute parameter will control the files

that are found. */

void DiMakeRequest (PREQUESTHEADER *hptr, PCH filespec, USHORT att)

{
PREQUESTHEADER
PDIRINFORESULT
SEL
void far
USHORT
HQUEUE
PID
PCH
char
char
USHORT

header;
resultstru;
hselector,serversei;
*resuits;
retval, size, psize = 0, setdir = FALSE;
qhandle;
qowner;
requestspec;
resultbuf[_MAX_DIR], *resultfspec;
currentpath[_MAX_PATH];
currentdrive;

if(!(header = *hptr))
dilnit (&qowner, & qhandle);

/* Now gather the information to prepare the header:

• Get the current disk drive
• Get the length of the current path
• Get the size of the request arguments (the requestspec)

• Allocate the header segment
• Make it available to the server process */

getdriveinfo(Scurrentdrive, currentpath, fipsize);

/* If no header is allocated */if(!header)

{
/* Allocate header segment */

if(retval « diallocseg(size « sizeof(REQUESTHEADER),&hselector,
qowner, fiserversel))

error_exit (retval, "diallocseg");

/* Make header pointer */header « MAKEP (hselector, 0);
*hptr = header;
header->serverhsel - serversei; /♦ Allocate work segment */

if(retval ■ diallocseg(MAXSEGSIZE,&header->rselector, qowner,
fiserversel))

error_exit (retval, ’’diallocseg");

results = MAKEP (header->rselector, 0) /* Make pointer */

header->RAMsem = 0L; /* Initialize semaphore */

header->resultptr « MAKEP (serversei, 0); /* Set pointer to work area*/

NOVEMBER 1989

I
header->serverwsel = serversei; /* Selector to work area */
header->numRequests =0; /* Set number of requests */

requestspec = (PCH)results; /* Set to work area */
header->currentdir = requestspec; /* Set pointer to it */
*requestspec++ = (char)(currentdrive + ’A' - 1);

/* Add drive letter */
strcpy(requestspec, ":\\"); /* And ":\" */
requestspec += 2; /* Move pointer past them */

DosQCurDir(currentdrive, requestspec,&psize);
/* Add current directory */

requestspec += (strlen(requestspec)+1); /* Move pointer past dir */
header->qowner = qowner;
header->qhandle = qhandle;
}

else
{

requestspec = header->requestspec;
qowner = header->qowner;
qhandle = header->qhandle;

size = header->size + sizeof(DIRINFORESULT);
hselector = SELECTOROF(header);

if(retval = DosReallocSeg(size, hselector)) /* Resize segment */
error_exit (retval, "DosReallocSeg");
}

/* Resultstru always points to the next available structure */
resultstru = &header->resultArray[header->numRequests];

strupr(filespec); /* Set arg to upper case */
memset (resultstru, 0, sizeof(DIRINFORESULT)); /* Clear structure */
resultstru->attributes « att; /* Set attributes */

/* Get full path filespec */
makefpath(filespec, resultbuf, currentpath, currentdrive);
resultfspec = strrchr(resultbuf, ’ W) ; /* Find last backslash */

if(strcmp(resultbuf, header->currentdir)) /* If not in currentdir */
{
strcpy(requestspec, resultbuf); /* Copy path */
resultstru->currentdir = requestspec; /* Set pointer */
requestspec += (strlen(requestspec)+1);

/* Set pointer to next spot */
}

else /* Use default directory */
resultstru->currentdir = header->currentdir; /* Set pointer */

strcpy((char *)requestspec, resultfspec); /* Copy the filespec */
resultstru->filespec = requestspec; /* Set a pointer to it */
requestspec += (strlen(requestspec)+1); /* Set to next position */

header->size = size;
header->numRequests++;
header->request spec = requestspec;
}

void DiSendRequest(PREQUESTHEADER hdr)
{

PCH *resptr, *newptr;
USHORT offset, retval, i;
SEL newsel, serverwsel = SELECTOROF(hdr->resultptr);
PBYTE sheader = MAKER (hdr->serverhsel, 0); /* Make pointer */

/* Adjust resultptr to point to available space */
resptr = MAKER (hdr->rselect or, 0); /* Create ptr to result */
offset = (hdr->requestspec - (PCH)resptr); /* Get offset to use */
hdr->resultptr = MAKER (serverwsel, offset); /* Reset pointer */

/* Write request to the queue */
if(retval ■ DosWriteQueue(hdr->qhandle, 0, hdr->size, (PBYTE)sheader,0))

error_exit (retval, "DosWriteQueue"); /* Wait for server to finish */

Figure 4
handles requests for directory
information from client pro-
cesses that pass these requests to
the server by using its queue.
DISERVER is also a thread ser-
ver—it creates a new thread to
process every request it
receives. DISERVER.C, which
contains the entire server pro-
gram, consists of two functions:
main, which waits for requests
and then starts a new thread to
service them, and server_thread,
which contains the code that
services the request.

The ma in t h r ead of
DISERVER is fairly simple. It
creates its queue and blocks on a
call to DosReadQueue to wait
for requests from client pro-
cesses. Once it receives a re-
quest, it finds an available thread
and creates a specific thread to
service the request. It uses an
array of SERVERTHREAD
structures that contains a sema-
phore, a thread ID, a request
pointer, a thread number, and a
stack for each thread. To find an
available server thread, the main
thread simply looks for an
unused structure (identified by a
thread ID set to zero) in this
array. Then it sets the thread’s
semaphore and creates the new
thread. The thread will imme-
diately block on the semaphore,
allowing the main thread to set
the thread’s ID, request pointer,
and number. Then the main
thread clears the thread’s sema-
phore and returns to the
DosReadQueue call to wait for
the next request.

The re is no need for
DISERVER to provide any
visual output in routine use, so
you can run it in a PM window,
a full-screen session, or in a
background screen group. I
occasionally found it useful
(and fascinating) to watch its
progress, however, so I left a
number of messages embedded
in the code. These will print if
you start DISERVER with
the /v (verbose) parameter.

DosSemSetWait (&hdr->RAMsem, SEM_INDEFINITE_WAIT); /* Get new segment */

NOVEMBER I9S9

MICROSOFT
SYSTEMS
JOURNAL

Figure 4

52 if(retval « DosAllocSeg(hdr->resultsize, Snewsel, SEG_NONSHARED))

error_exit (retval, ’’DosAllocSeg");

newptr = MAKE? (newsel, 0); /* Make pointer to segment */

memmove(newptr, resptr, hdr->resultsize); /* Copy from old segment */

convertpt r(&hdr->currentdir, newsel); /* Convert pointers */

convertptr(&hdr->requestspec, newsel);

for (i = 0; i < hdr->numRequests; i++)

{
convertptr(&hdr->result Array[i] . filespec, newsel);

if(SELECTOROF (hdr->resultArray[i].currentdir) == hdr->rselector)

convertptr(&hdr->result Array[i].currentdir, newsel);

convertptr (&hdr->resultArray[i].first file, newsel);

convertptr(&hdr->result Array[i].nextfile, newsel);

)

DosFreeSeg(hdr->rselector); /* Free old segment */

hdr->rselector = newsel; /* Set for new selector */

)

void DiGetNumResults(PREQUESTHEADER header, USHORT *numresults,

USHORT *numrequests)

{
♦numresults = header->totalresults;
♦numrequests = header->numRequests;

)

void DiDestroyRequest (PREQUESTHEADER *header)

{
USHORT retval;
PREQUESTHEADER hdr » *header;

Server Threads
Each thread started by the

server will block on its sema-
phore until the semaphore is
cleared by the server’s main
thread. Then the server thread
will enter a loop, calling
DosFindFirst for each filespec
in the request. The server thread
does not have to ca l l
DosFindNext, since the thread
provides a large buffer in which
DosFindFirst can place its
results. DosFindFirst creates a
FILEFINDBUF structure for
each filename found; these
structures are placed in a buffer
area that is specified when the
function is called.

If DosFindFirst indicates that
no files are found or that the path
doesn’t exist, the returned error
va lue is p l aced in the
DIRINFORESULT structure
for that filespec. If only one file
is found and the file’s attribute
byte has its directory bit set, the
thread will try the call to
DosFindFirst again, but this
time with “*.* ” appended to
the filename, allowing it to ex-
pand to a single matching direc-
tory. Otherwise, DosFindFirst
will place the resulting file-
names in the work segment area.
A pointer to this area and a
variable indicating the re-
maining space are adjusted with
each pass through the loop, so
that subsequent calls to
DosFindFirst will not overwrite
information from previous calls.

If a call to DosFindFirst is
successful, the server thread will
set the fields of that filespec’s
DIRINFORESULT structure
for the first file found and the
number of files found. The ser-
ver thread will also adjust the
total number of files found in the
request header. Then the thread
enters a loop to adjust the buffer
pointer past the last file found (if
verbose mode is on, it will also
print each filename as it passes
through the loop), sleep for one

if(retval = DosFreeSeg(hdr->rselector)) /* Free work segment */

error_exit (retval, "DosFreeSeg");

if(retval = DosFreeSeg(SELECTOROF (hdr))) /* Free header segment */

error_exit (retval, "DosFreeSeg");

♦header = NULL; /* Set pointer to NULL */

)

char *DiGetResultFspec(PDIRINFORESULT result)

{
static char *p =

if(result->errorval == DIREXPANDED)
return p;

return result->filespec;

)

char *DiGetResultDir(PDIRINFORESULT result)

<
static char dirbuf[80];

if(result->errorval «« DIREXPANDED)

{
strcpy(dirbuf, result->currentdir);
strcat (dirbuf, "\\");
strcat (dirbuf, result~>filespec);
return dirbuf;

}

return result->currentdir;

void DiGetResultHdl(PREQUESTHEADER header, USHORT requestnum, USHORT *num,

PDIRINFORESULT *resulthdl)

{
♦resulthdl = &header->resultArray[requestnum];

♦num = (*resulthdl)->numfound;

}

void DiGetFirstResult (PDIRINFORESULT result, char *buffer)

{
result->nextfile = result->firstfile;

DiGetNextResult (result, buffer);

)

NOVEMBER 1989

Figure 4

53second, and return to the top of
the loop in order to process the
next filespec.

Once all filespecs have been
processed, the thread will use
pointer arithmetic to calculate
the total space used in the work
segment. Then it frees the work
segment, clears the header
semaphore to notify the client
that it is finished with the
request, and frees the header
segment. The server thread then
sets its own thread ID to zero,
thus notifying the main thread
that it is terminating (and allow-
ing the main thread to reassign
the server thread’s data area to a
new thread). Finally, it will call
DosExit to terminate itself.

Return to the Client
When the server clears the

request header semaphore, the
client thread that called
DiSendRequest and blocked on
the semaphore can proceed. The
thread using DiSendRequest
allocates a new work segment,
copies the data and adjusts the
pointers, and frees the old work
segment. Then it returns to the
calling thread.

At this point, the client can
retrieve the request results. Even
though the client has only made
a call to DiMakeRequest for
each filespec and a single call to
DiSendRequest, the results are
in; the server has actually done
all the real work.

The client can use several
functions to access the results of
a request. In DISIMPLE.C, a
call is made to DiGetResultHdl
to get a handle to the results of
filespec zero, since this was the
first (and only) filespec in the
request. An application can call
DiGetNumResults, however, to
find out how many filespecs
were placed in a request (and,
incidentally, how many file-
names were found) and then call
DiGetResultHdl for each of the
filespecs. Once it has obtained a
handle to a result, an application

void DiGetNextResult (PDIRINFORESULT result, char *buffer)
{

if(’result->nextfile)
{
♦buffer = '\0 ’;
return;
}

strcpy(buffer, result->nextfile->achName);
result->nextfile =

(PFILEFINDBUF)(&(result->nextfile->cchName)+
result ~>nextfile->cchName+2);

}

void DiGetFirstResultPtr(PDIRINFORESULT result, PFILEFINDBUF *ptr)
{

result->nextfile = result->firstfile;
DiGetNextResultPtr(result, ptr);
}

void DiGetNextResultPtr(PDIRINFORESULT result, PFILEFINDBUF *ptr)
{

if(!result->nextfile)
{
♦ptr = NULL;
return;
}

*ptr = result->nextfile;
result->nextfile =

(PFILEFINDBUF)(&(result->nextfile->cchName)+
result->nextfile->cchName+2);

}

void DiBuildResultTbl(PREQUESTHEADER header, PFILEFINDBUF **table)
{
SEL tablesei;
USHORT retval, i;
PFILEFINDBUF f,*temp;

if(retval « DosAllocSeg((header->totalresults*sizeof(PFILEFINDBUF)),
stablesel, SEG_NONSHARED))

error_exit (retval, "DosAllocSeg");

temp = MAKEP (tablesei, 0);
f = header->resultArray[0].firstfile;

for(i = 0; i < header->totalresults; i++)
{
temp[i] = f;

f = (PFILEFINDBUF)(&(f->cchName)+f->cchName+2);
}

♦table = temp;
}

void DiDestroyResultTbl(PFILEFINDBUF **table)
{
USHORT retval;

if(retval = DosFreeSeg(SELECTOROF(*table)))
error_exit (retval, "DosFreeSeg");
♦table = NULL;

}

void dilnit (PID *qowner, HQUEUE *qhandle)
{
USHORT retval;

/* Try to open the queue to the directory server */
if(!(retval = DosOpenQueue(qowner, qhandle, DIRINFOQNAME)))

return;
if(retval != ERROR_QUE_NAME_NOT_EXIST)
error_exit (retval, "DosOpenQueue");
else

NOVEMBER 1989

MICROSOFT
SYSTEMS
JOURNAL

error_exit (retval,
"DosOpenQueue - Server probably hasn't opened queue");

}

void convertpt r(VOID **ptr, SEL newsel)
{
USHORT offset = OFFSETOF(*ptr);
*ptr = MAKER (newsel, offset);
}

/* Assumes that globals, currentpath and currentdrive are properly
initialized */

void makefpath(char *org, char *result,char *currentpath,
USHORT currentdrive)

{
char drive[_MAX_DRIVE], dir[_MAX_DIR], fname[_MAX_FNAME],

ext [_MAX_EXT];
char currdir[_MAX_DIR], *backup, *outdir;
USHORT driven©, cdirsize ■ _MAX_DIR-1, retval;
strupr(org); /♦ Make the path uppercase */
_splitpath(org, drive, dir, fname, ext); /* Get path components */

/♦ If we have a full path from the user at this point, we don’t have
to do anything more-whatever they ask for, they get. If we don't have
a full path, we will need to get the full path to the current
directory of that drive, and then reconcile the working directory or
parent directory to end up with the "real" path to the file. However,
if the path is on the same drive, we can use currentdir and save the
time of a DosQCurDir call. */

if(• (*drive)) /* If no drive letter */
(
driveno = currentdrive;
♦drive = (char)(currentdrivet'A'-1);
strcpy(fidrive[1],":");
}

else
driveno = (*drive-'A'+1);

if(*dir ’= '\\') /* If not a full path */
{

if(driveno •= currentdrive)
{
♦currdir = '\\';

if(retval = DosQCurDir(driveno, Scurrdir[1], &cdirsize))
error_exit (retval,

"DosQCurDir - probably invalid drive or directory");
}

else
strcpy(currdir,¤tpath[2]);

if(lastchar(currdir) ’= '\\')
strcat (currdir, "\\");

strcat (currdir, dir);
strcpy(dir, currdir);
I

/* dir now has full path to the filespec, reconcile and restore */
while(backup = strstr(dir, ”\\..\\")) /♦ Remove any "\..\" */

{
for(outdir = backup-1; (*outdir ’= '\\') && (outdir > dir);

outdir--);
/* Now outdir is ’\ 1 dest */

backup += 3; /* now backup is source '\'*/
strcpy(outdir, backup);
}

while(backup = strstr(dir, "\\.\\")) /* Remove any "\.\" */
{
outdir = backup;
backup += 2;
strcpy(outdir, backup);

}

Figure 4
can either call DiGetFirstResult
and DiGetNextResult to retrieve
the name of each file found, or
D iGe tF i r s tResu l tP t r and
DiGetNextResultPtr to retrieve
a pointer to the FILEFINDBUF
structure returned by OS/2 for
that filename. Although the
FILEFINDBUF structures are
not in an array, a client can call
DiBuildResultTbl to create an
array of pointers to the results of
a r eques t . The use of
DiBuildResultTbl will be
demonstrated in one of the client
programs discussed below.

An application should call
DiDestroyRequest when it has
finished accessing the results of
a D iSendResu l t c a l l .
DiDestroyRequest will call
DosFreeSeg to free the work
and header segments and permit
OS/2 to discard the segments.
DiDestroyRequest will reset the
request handle to NULL, too.

The next part of this article is
a discussion of two client appli-
cations—the LS utility and the
DIPOP program.

LS Utility
The LS utility has an unusual

history. I first wrote LS as an
add-on utility for a UNIX®-like
DOS2 shell. When I began pro-
gramming for OS/2, one of the
first assignments I gave myself
was to port my favorite tools
from DOS to OS/2. 1 had always
found the UNIX LS program
more useful and informative
than the DOS DIR command, so
my DOS-based imitation of the
LS program was one of the tools
I ported to OS/2.

Once the DI routines were
complete, I found it a trivial task
to modify LS to use them—and
found myself cutting away a
great deal of the existing code,
now that the complexities of
DosFindFirst and DosFindNext
were absent. LS not only illus-
trates how easy it is to incor-
porate and use the DI routines in
an application, it also demon-

54

NOVEMBER 1989

Figure 4
strates the portability of C; after
all, the program imitates a UNIX
utility, was written for DOS, and
was ported to OS/2.

LS, like its UNIX counterpart,
takes a series of command-line
filespecs, expands them, and
prints the results of the expan-
sion. One or more options can be
specified that control the output
of the program (sorting, printing
in columns, paging, filtering out
certain types of files, and so on).

LS is only slightly more com-
plex than the DISIMPLE pro-
gram. It uses the read_options
function to read any command-
line arguments, sets the options,
and removes the options from
the command line. Then it enters
a loop and calls DiMakeRequest
for each of the command-line
filespecs. Finally, it calls
DiSendRequest to issue the
request to the server.

Upon r e tu rn ing f rom
DiSendRequest, LS calculates
the remaining space on the drive
on which the first filespec is
found. To do this, it calls
DiGetResultHdl to get a handle
to the first fi lespec and
DiGetResultDir to access the
full path to that filespec, which
is another convenient use of the
DI functions.

In order to access, sort, and
print the results, LS calls
DiBuildResultTbl to build a
table of the results. This function
will create an array of pointers to
each of the FILEFINDBUF
structures placed in the work
segment by the server.
DiBuildResultTbl returns a
pointer to the results table that
the calling thread can use to
access these structures. LS
passes the table to the C library
qsort routine, which sorts the
pointers in preparation for print-
ing the file information. (The
details of the sort comparisons
are contained in the function
qscmp, which can sort the
pointers by the date-time stamp
of the file or the filename.)

_makepath(result, drive, dir, fname, ext); /* Put it all back together ♦/

}

void getdriveinfo(USHORT *currentdrive, char *currentpat h, USHORT *psize)
{
ULONG drivemap;
USHORT retval;

DosQCurDisk(currentdrive, &drivemap); /♦ Get current drive number */
♦currentpath = (char)(*currentdrive+ ’A'-1);
strcpy(¤tpath[1], ":\\");

♦psize = _MAX_PATH;
if(retval = DosQCurDir(*currentdrive,¤tpath[3], psize))

error_exit (retval, "DosQCurDir”);

DosQCurDisk(currentdrive, &drivemap); /♦ Get current drive number */
♦psize = 0;
DosQCurDir(*currentdrive, NULL, psize); /* Get size of current path */

}

USHORT diallocseg(USHORT size, SEL *oursel,PID other, SEL *othersel)
{
USHORT retval = 0;

/* And shareable by server */
if(» (retval = DosAllocSeg(size, oursel, SEG_GIVEABLE)))

retval = DosGiveSeg(*oursel, other, othersel);

return retval;
}

s
Fi lename

DIPOP.EXE
• — - TimeS ize UpDate At tr ibutes

Direc tory
9270

26326
16526
46099

4304
34119

4218
16149

2099
14952

1578
14327

9 /20 /89 12 :45 :12a
9 /20 /89 12 :45 :48a
9 /20 /89 “ , r A *
9 /20 /89
9 /20 /89
9 /20 /89
9 /20 /89
9 /20 /89
9 /20 /89
9 /20 /89
9 /20 /89
9 /20 /89

12:46 :24a
12:49 :18a
12: W:32a

12:51 :04a
12:56 :12a
12:56 :18a
12:58 :24a

Read-Only

Hidden

System

9/12 /89
9 /12 /89

3: 16 :58p
3 : 16 : 58p

4 ! \Hfi5\CfiPTURES\TMP*. firchiue

>TURES\TMP:

Enter Pause Esc Clear

LS calls the print_entries
function in order to access the
table and print the filenames.
Print_entries can display the
output in a long listing (the
default), with name, date, time,
size, and attributes, or as file-
names only, in a single column
or multicolumn listing. It can
also wait for a keystroke at the
end of each screenful of
information and will auto-
matically detect the screen size
of a window. When it has
finished displaying the results,
LS calls DiDestroyResultTbl in
order to free the table and
DiDestroyRequest to free the
header and work segments.

DIPOP Program
The DIPOP client program is

more complex. It uses the DI
functions to access the server,
expand filespecs, and retrieve
directory information; it has a
user interface, and it uses
multiple threads to manage
input and output.

Like LS, DIPOP is a charac-
ter-mode directory information
program. But DIPOP is not a

Figures The user interface for DIPOP, a
client program that uses the DI functions.

NOVEMBER 1989

MICROSOFT
SYSTEMS
JOURNAL

56
command-line utility; it has a
real user interface and you can
leave it running in a PM window
and use it as needed. DIPOP

which the main thread uses to
notify the print thread that out-
put is available. The other is the
use of screen buttons, which are
kept in a table (an array of struc-
tures) in DIPOP.C. Several
routines, found in BUTTON.C ,
are available to initialize, dis-
play, paint and repaint the
buttons, and to notify a thread
when a mouse click occurs
inside them. Each button is
assumed to be three screen rows
high, use a double border on the
top and bottom and a single
border on the sides, and be
painted as white foreground on
red background when high-
lighted (this is controlled by a
macro at the top of the source
file). The structure for each
button includes the text to be
displayed in the button, the
button’s row and column coor-
dinates, and a button attribute
for repainting the button. A vari-
able controls whether the button
is a press button (turns briefly on
and then off when clicked), a
toggle button (turns off when
clicked and on when clicked
again), or an input button (does
not change state when clicked).
Finally, each button contains
values that are returned when
the left or right mouse button is
clicked on it and an accelerator
key is pressed (this allows the
button to be accessed by using
the keyboard).

Using the message queues
and mouse buttons minimizes
the overhead of the main thread
and efficiently delegates the
management of input to the key-
board and mouse threads. The
buttons also allow the main
thread to create an input screen
easily, and simplify main-
tenance and modifications by
the programmer. For example, I
added a directory attribute
button to the interface long after
the rest of the code had been
written, spending only a few
moments and adding only a
couple of lines of source code.

How DIPOP Works
The use of the screen buttons

and the message queue simpli-
fies the operation of DIPOP
immensely. The main thread
begins by calling the message
queue function, MsgQCreate, to
create its message queue. Next,
the program clears a semaphore
that it will use to control the
scrolling by the print thread
(signaled by pressing the Pause
button). Then the main thread
creates each of the three threads
and sleeps briefly, to allow them
to get started. The main thread
then calls a set of customized
functions that initialize the
buttons and the screen and dis-
play the various buttons.

Finally, the main thread enters
a loop that contains a large
switch statement. It will block
on a call to MsgQGet until it
receives an event message and
will use the switch statement as
a table of messages and actions.
Unidentified messages are
passed, by default , to the
buffermgr function, which will
attempt to use the message to
manipulate the filespec entry
field. Thus, once the main thread
of DIPOP receives an event
message from its message
queue, it can process the mes-
sage swiftly and effectively and
take any necessary action.

All mouse and keyboard input
in DIPOP is detected by the
appropriate thread. The mouse
thread uses the ButtonPressed
function to screen out unwanted
mouse events and to include
events for which a screen button
was pressed. The keyboard
thread uses the function
AcceleratorPressed to distin-
guish button accelerators from
other keyboard events. Both of
these threads call the message
queue function, MsgQSend, to
notify the main thread of these
events. Since all message queue
messages are a single unsigned
word, the application is

handles only one filespec at a
time, but you can use either the
keyboard or the mouse to select
the drive and directory and to
create the filespec used to search
for files. You can also select a
combination of attributes to be
used. To facilitate mouse input
in a character-mode application,
I’ve adapted the screen buttons
that were used in an earlier
article in this series (“Exploring

the Key Functions
of the OS/2 Key-
board and Mouse
Subsystems,” MSJ
Vol. 4, No. 4).
Finally, DIPOP
implements a mes-
sage queue scheme
that is reminiscent
of the one found in
P re sen t a t i on
Manager (see the
sidebar “Create
Message Queues
Wi thou t Us ing
Presen t a t i on
Manager”).

D I P O P ’ s
architecture is
inherently multi-
threaded. Separate
threads monitor
mouse and key-
board input and
another thread dis-
plays the results of

each filespec request in a portion
of the screen. The main thread

UsiNG MESSAGE

QUEUES AND MOUSE

BUTTONS MINIMIZES

THE OVERHEAD OF

THE MAIN THREAD

AND EFFICIENTLY

DELEGATES THE

MANAGEMENT OF

INPUT TO THE

KEYBOARD AND

MOUSE THREADS.

starts each of the other threads,
reacts to information from the
keyboard and mouse threads,
creates and sends requests to the
DI server, and notifies the print
thread when the server has
returned results.

Two key components are
essential to the architecture of
DIPOP. The first is the message
queues, which the mouse and
keyboard thread use to notify the
main thread of input events and

NOVEMBER 1989

the left mouse button will decre-
ment the drive letter choice;
clicking the right button will
increment it. As users change
drives, the current directory for
each appears along the upper
border of the directory button.
The path that appears is always
the one that is used in a DI
request. The directory button
can be used to see into a list of
subdirectories in the current
directory. Users can click on this
button to view the entries in the
list. Clicking the right mouse
button on the [..] button changes
to a directory; clicking the left
mouse button on the [..] button
changes to the parent directory.
When changing directories, the
path on the upper border of the
drive button will reflect the
change. The [\] button can be
used to jump to the root direc-
tory of any drive.

In addition to typing the
characters that make up the file-
spec, users can use the mouse to
click the “ * ”, “ \ ” , “ . ”, and
“ ? ” buttons. When one of these
buttons is clicked, the program
inserts the character represented
by the button at the current cur-
sor position in the entry field.
Users can control the scope of
the search by clicking the attri-
bute buttons that appear on the
right side of the screen. They can
access the attribute buttons via
an accelerator key, which is Alt
and the first letter of the button
text; for example, Alt-H toggles
the Hidden button.

When users are ready to initi-
ate a request for directory infor-
mation, they press the Enter key
or click the Enter button. To
pause the scrolling of the results,
they click the Pause button
(clicking the Pause button again
resumes scrolling). Pressing
Alt-C or clicking the Clear
button clears the entry field and
resets the attribute buttons.
Users can press Esc or click the
Esc button to terminate the
program.

designed to use the high-order
bits in the message to pack
additional meaning into the
message. This is how ordinary
ASCII values, scan codes, and
mouse events are encapsulated
in to messages (see the
SCANCODE macro and
EVENTCODE macro at the
beginning of the program).

Most event messages pertain
to building a request for direc-
tory information, but there are
three exception messages.
When the main thread receives
an ENTER message, it calls
SendRequest to create the
request and send it to the DI
server. After the server has ser-
viced the request and before the
function returns, it places the
request on the print thread’s
message queue, notifying the
print thread that there is work to
be done. If the main thread re-
ceives a PAUSE_EVENT mes-
sage, it will toggle the state of
the semaphore that controls the
processing by the print thread.
This lets the main thread control
the print thread instantly, allow-
ing the user to control the scroll-
ing of the display temporarily. If
the main thread receives an
ESCAPE-EVENT message, it
will close its message queue,
destroy any existing DI request,
clear the screen, and exit.

User’s View of DIPOP
Figure 5 shows what the user

sees when using DIPOP. The
screen is divided into two sec-
tions: half of the screen area is in
a window that extends from the
upper-left comer of the screen,
and the other half is filled with
buttons and runs along the right
and bottom sides of the screen.

To build a directory request,
users just type a filespec (at the
cursor position in the entry field)
and select the drive and direc-
tory in which the server will
search for the filespec. To select
the drive, the mouse is used to
click the drive button. Clicking

57Improvements
After designing the DI pro-

grams presented in this article, I
thought of several improve-
ments that could be made to
them. The server could be
modified to use named pipes,
which would allow it to be used
transparently over a network.
Moving the results from a
memory block that belongs to
the server into a memory block
that belongs to the client would
require some work—but it could
be done. As I mentioned, the DI
functions could be
implemented as
dynamic - l i nk
libraries.

One improve-
ment to DIPOP
involves a bug in
OS/2 that occurs
when it is run in a
full-screen win-
dow. If DIPOP is
run in a full-screen
window, the mouse
pointer will leave
traces of itself on
the screen when-
ever a screen button
is clicked. The code
that repaints a
button (in the
ButtonPress rou-
tine) simply paints
the button, sleeps momentarily,
and repaints the button.
Unfortunately, there is no
coordination between VIO and
the mouse driver, so VIO
doesn’t take into account that
the mouse driver might need to
know that the mouse pointer
should be redisplayed in a new
color—thus, traces of the mouse
pointer are left on the screen.
The only way around this prob-
lem is to store the current loca-
tion of the mouse pointer before
doing any screen update that
might overwrite it, save what is
stored under the mouse pointer,
perform the screen update, and
restore what was under the

I F THE MAIN THREAD

RECEIVES A

PAUSEEVENT

MESSAGE, IT WILL

TOGGLE THE STATE

OF THE SEMAPHORE

THAT CONTROLS THE

PROCESSING BY THE

PRINT THREAD.

NOVEMBER 19X9

MICROSOFT
SYSTEMS
JOURNAL

mouse pointer. It’s unfortunate
that the user has to do this, since
this is just what VIO and the
mouse driver are supposed to do.

With the advent of OS/2

more information on OS/2
queues in the article on IPC in
this series, “A Complete Guide
to OS/2 Interprocess Commu-
nications and Device Mon-
itors,” MSJ Vol. 4, No. 5. Since
the contents of this user-defined
code are determined by the
programmer, you can use it to
create your own messages,
which can be customized from
application to application or
used over again. In addition,
queues can be an efficient way to
pass the event code.

Thus, the functions in
MSGQ.C allow one thread, the
message queue owner, to use
MsgQCreate to create a mes-
sage queue. This function
returns a handle that the queue
owner passes to MsgQGet,
where the thread will block until
a message is received and
returned. Other threads can send
messages to the queue owner
thread by opening the message
queue with MsgQOpen, which
also returns a handle. These
threads can pass the handle to
MsgQSend, along with a
message that is placed in the
queue. The message queue
functions hide the details of
manipulating and using OS/2
queues; a thread only needs the
name of the queue to create or
open it and it can use the
returned handle when refer-
encing the queue.

Message Queues and
DIPOP

In DIPOP, message queues
are essential to coordinating the
activities of the different threads
and passing information from
one thread to another. Two
message queues are created: one
is owned by the main thread and
is used by the mouse and key-
board threads; the other is the
print thread, which uses a mes-
sage queue to allow access to the
results of DI requests from the
main thread.

After the main thread has ere-

58 Create
Message Queues

Without Using
Presentation

Manager

Early in the design of the
DIPOP program, it became
apparent that using semaphores
to pass information and syn-
chronize input from the mouse
and keyboard threads would be
awkward and cumbersome. If a
semaphore were used, the
mouse or keyboard thread might
be blocked for too long while
waiting for the main thread to
acknowledge and act on the
event. Plus, users could alter-
nate between clicking mouse
buttons and pressing keys; using
semaphores to determine the
order of events would be messy.
It is also possible that multiple
events could occur and
accumulate quickly — which
would be intolerable if the
threads were not able to process
input efficiently.

A facility was needed that
would report keyboard and
mouse events in the order in
which they occurred. Such a
facility would allow the event
information to accumulate in
that order until the main thread
acted on them. In addition, the
mechanism would be efficient,
simple, and, with luck, elegant.

The solution was the handful
of functions in MSGQ.C (see
Figure A). These functions apply
a software interface layer to
OS/2 queues and create and
manipulate a series of message
queues. OS/2 queues are
typically used to transfer a
pointer to shared memory (this
is how the DI client-server
functions use them), but they
can also transfer a user-defined
code in the form of a 2-byte,
unsigned word. You can find

Version 1.2, there will be
opportunities to make
some minor modifi-
cations to the pro-
grams so that they
will work trans-
parently with the new
High Performance
File System (HPFS).
These modifications
should allow long,
free-form filenames,
few or no restrictions
on path punctuation,
new extended attri-
butes, and new access
control lists. The
changes should also
allow the use and
display of the addi-
t i ona l da t e - t ime
stamps provided by
HPFS.

The error checking
and exception han-
dling in the DI
programs can be

improved. The server could be
modified to clear all pending
semaphores before it exits and to
allocate the thread stacks

THE FUNCTIONS IN

MSGQ.C ALLOW ONE

THREAD TO USE

MSGQCREATE TO

CREATE A MESSAGE

QUEUE. THIS

FUNCTION RETURNS

A HANDLE THAT THE

QUEUE OWNER

PASSES TO

MSGQGET.

dynamically instead of keeping
them in a table.

Other improvements to
DIPOP might include better
error and exception handling,
syntax checking, and a wait
indicator. Finally, the most
important improvement would
be a graphical user interface
with real buttons, list boxes, and
scroll bars. The next step for the
program is obvious: a port to
Presentation Manager.

NOVEMBER 1989

request header pointer or
handle, and that selector is the
message that is placed in the
queue. The print thread uses the
MAKEP macro to convert this
selector back into a pointer or
handle to the request.

Finally, a welcome side effect
of using the message queues in
DIPOP was the compactness of
the code for the mouse and key-
board threads. With so little to
do, these functions stayed small,
tight, and efficient.

Advantages
Message queues let you create

a message-based, event-driven
architecture that simplifies the
workings of your program and
the organization of your
application’s code. They let you
focus the program’s code on
reacting to events; for example,
user input. This makes the job of
writing the code much simpler.
(Just make sure you have a way
to handle any foreseeable input.)
Message queues also make it
easier to write more efficient
code, since a thread will wait for
something to do and then
promptly do it.

In DIPOP, message queues
are the means of coordinating
input and output among mul-
tiple threads. You won’t have to
worry about flags or sema-
phores or the order of events—
that’s taken care of for you.
Message queues allow each
thread to monitor a source of
input and independently report
events to another thread, and for
the events to be stored and
retrieved in a simple, orderly
fashion, without additional pro-
gramming overhead.

Message queues also allow
more flexibility in designing a
program and simplify stepwise
refinements to the code. If, for
example, a new capability is
needed, you simply define the
input (such as a keystroke or
mouse click), define the steps
for processing that input (such

ated the other threads and com-
I pleted its initialization, it calls

MsgQGet and blocks until it
receives an input event message
from the keyboard or mouse
thread. These threads block on
keyboard input (by using
KbdCharln) or mouse input
(using MouReadEventQueue).
The keyboard thread can
quickly identify a keystroke as
an ASCII key, scan code, or
accelerator key, place the key in
the main thread’s message
queue, and wait for the next
keystroke. The mouse thread
waits for mouse events, screens
out unwanted events (such as
mouse movements when no
buttons are pressed), identifies
important mouse clicks, and
places the corresponding
messages in the message queue.
Then it resumes waiting for the
next mouse event. The main
thread, meanwhile, remains
blocked much of the time,
waiting for event messages to
appear in its queue and reacting
to them when they do appear.
The result is that the main
thread’s code is a large switch
statement that resembles the
kind of message-processing
code found in Windows3 and in
PM programs.

This design worked so well
that I decided to use it again
when I wrote and tested the print
thread code. It was easy to have
the print thread create a message
queue, block on the call to
MsgQGet until the main thread
posted a message, and use the
message to display the results of
a DI request. The messages
generated by the keyboard and
mouse threads are largely key-
board codes with the high-order
bits set to indicate whether they
are from the text buttons used in
DIPOP. Since a message passed
to the print thread is the selector
of the request header segment,
the main thread uses the
SELECTOROF macro to
extract the selector from a

59
as adding a case to the switch
statement), and you’re done.

A multithreaded program
architecture allows for a proper
division of the labor; that is,
each thread is delegated the
responsibility of handling a spe-
cific task. Message queues help
ensure the smooth operation and
flow of information from one
thread to another, since they
allow each thread to report
important events and return to
what the thread does best—
waiting for the next event to
occur.

DosFindFirst
and DI Memory
Management

The most important benefit of
the DI functions and server is
that they give applications a
simpler, more effective, more
efficient interface
to the OS/2 file -
searching func-
tions. DosFindFirst
and DosFindNext
fit several appli-
cation contexts
flexibly, but their
main purpose is to
make it easy to port
app l i ca t i ons to
OS/2 from DOS.
Before exploring
how to use them
more effectively
under OS/2, here’s
a brief look at their
DOS predecessors.

Finding Files
under DOS
When a DOS

application needs
to expand a wild-
card filespec, it
uses two functions

MESSAGE QUEUES

LET YOU CREATE A

MESSAGE-BASED,

EVENT-DRIVEN

ARCHITECTURE THAT

SIMPLIFIES THE

WORKINGS OF YOUR

PROGRAM AND THE

ORGANIZATION OF

YOUR APPLICATION S

CODE.

of Int 21h. Typically, the
application gains access to the
DOS disk transfer area (DTA)
and passes the filespec to

NOVEMBER 19X9

MICROSOFT
SYSTEMS
JOURNAL

function 4Eh of Int 21h. This
function places the name, size,
attributes, and date-time stamp
of the first file found into the
DTA. Then the application
enters a loop and generates the
interrupt again, this time with
function 4Fh, and retrieves the
information on each file until no

could take a long time to finish if
the number of files is large.
Second, the application can pro-
cess information on only one file
at a time, or it must manage
memory in an attempt to store all
the file information found.
There are two accepted
approaches to storing all of the
information. One is to allocate
space for each piece of file infor-
mation dynamically. The other
is to make an assumption about
the number of files to be found,
allocate the space to hold them,
and add to that space when
necessary. Either approach can
slow down an application if a
large number of resul t ing
files is found.

DosFindFirst and
DosFindNext

In some OS/2 applications,
using a loop with DosFindFirst
and DosFindNext is reasonably
efficient, especially when
you’re searching for a single file
or when time and memory
management are not critical to
the calling thread. To use
DosFindFirst, an application
must supply a pointer to a file-
spec, a directory handle, an attri-
bute word in which at least one
bit should match a bit in the
attributes of the resulting files, a
buffer in which to place the
results, the length of the buffer,
and a variable in which the
application specifies the number
of files to find. (OS/2 will
replace the variable with the
number of files found.)
DosFindNext requires the same
parameters, except for the file-
spec and attribute word.

DI Approach
Although the DOS-like

approach to finding files makes
it easy to port applications from
DOS to OS/2, DosFindFirst can
be used more efficiently.
Indeed, DosFindFirst is quite
capable of returning all the files
found in a single call, elimi-

nating the need to call
DosFindNext at all. The trick is
to provide a memory buffer big
enough to hold all the resulting
FILEFINDBUF structures.

The DI functions and the DI
server make providing that
memory buffer easy. They
allocate a full 64Kb segment for
use in the DosFindFirst call and
place all of the results found in
this segment. Then they
essentially resize the segment,
so that when DiSendRequest
returns to the calling thread, the
application owns only the
memory that is necessary to hold
the results.

The DI functions assume that
all results found for a single
request, including those
returned by the expansion of
multiple filespecs, will fit into a
single 64Kb segment. What this
means, for example, is that if an
application made a request with
10 filespecs and each expanded
to 100 files, in which every
filename occupied a full 13
characters, the result would
occupy 36,000 bytes. (A full 13-
character filename with the
terminating NULL makes a
FILEFINDBUF structure that is
36 bytes long; thus the result is
10 x 100 x 36, or 36,000 bytes.).
A more likely situation would be
10 filespecs expanded to 200
files each in which the average
length of the filenames was
eight characters—in this case,
the results would need a total of
62,000 bytes (10 x 200 x 31).
This would leave 3535 bytes to
spare. Although for most
applications 64Kb is a safe
assumption, an adjustment
should be made under OS/2
Version 1.2 to use multiple work
segments and allow for a longer
average filename.

Managing Memory
When an application calls

DiMakeRequest to create a new
request (with a handle initial-

CONTINUED ON PAGE 80

60

more files are found.
This process is illustrated in

two real-mode sample pro-
grams — DIRREAL1.C and
DIRREAL2.C. The former
illustrates how the entire pro-
cess is accomplished in C. The

latter shows how
high-level additions
to Microsoft’s real-
mode C run-time
library simplified
the process some-
what.

Under OS/2, you
can c r ea t e a
p ro t ec t ed -mode
equivalent, like
DIRPROT.C. That
program demon-
strates how the
DosFindFirst and
DosF indNex t
functions simplify a
port of a DOS pro-
gram to OS/2 by
keeping the logic of
the app l i ca t i on
intact. To port the
code, just replace
the Int 21h calls
with DosFindFirst
and DosFindNext,
adjust the code to
use the OS/2
FILEFINDBUF
data structure, and

To USE

DOSFINDFIRST, AN

APPLICATION MUST

SUPPLY A POINTER

TO A FILESPEC, A

DIRECTORY HANDLE,

AN ATTRIBUTE WORD,

A BUFFER FOR THE

RESULTS, THE

BUFFER LENGTH, AND

A VARIABLE

SPECIFYING THE

NUMBER OF FILES.

you’re done.
Although this approach to

searching for files must be
followed under DOS, it isn’t
particularly efficient for OS/2.
First, the calling application has
to loop through multiple calls to
the DosFindNext function and
there is no way to determine how
many of these calls must be
made ahead of time. The loop

NOVEMBER 1989

Exploring Dynamic-Link
Libraries with a Simple Screen
Capture Utility

61

Kevin P. Welch

new programming concept that
the Microsoft® Windows™ environment has
introduced to personal computers is dynamic
linking and dynamic-link libraries (DLLs). In
Windows1, dynamic linking refers to the manner in

which a function call in one module is dynamically related to object
code in another. DLLs contain a collection of functions that are
linked dynamically.

Although DLLs are not directly executable and don’t receive
messages, they are the building block on which the entire Windows
interface is based. However, despite this relationship, DLLs remain
somewhat mysterious to many Windows programmers.

The PRTSC utility is a relatively simple application that uses a
DLL to capture screen images and place them on the Windows clip-
board. When screen capture is activated, the Alt-PrtSc key
combination copies a bitmap representation of the client area
of the active window, the window frame, or the entire display to the
clipboard.

Besides serving as a useful documentation utility for your pro-
grams, PRTSC also demonstrates how to employ DLLs, keyboard
hook functions, and the Windows clipboard. In fact, this utility is
very similar to one in ClickArt® Scrapbook+, published by T/Maker
Company; both are powerful and full-featured extensions of the
Windows clipboard.

System Hooks
The section of the Windows Version 2.0 Programmer s Refer-

ence manual on the SetWindowsHook function is very intriguing.
This function was not thoroughly documented in previous versions
of Windows, and developers were advised to leave it alone until it
became a formal part of the documented application program
interface (API).

System hooks are particularly interesting because they enable you
to intercept various messages before they are processed by
Windows or dispatched to an application. With this capability you
can check for interesting keystrokes (as PRTSC does), monitor
application or system messages, and even record all system events
for subsequent playback.

System hooks are necessarily a shared resource; when you install
a hook you can affect all applications. Also, because of expanded

Kevin P. Welch is a computer scientist specializing in applied mathematics,
robotics and artificial intelligence. President of Eikon Systems, Inc., and a

doctoral candidate in applied mathematics, he has written numerous
articles on a variety of technical subjects.

A s YSTEM HOOKS ARE

INTERESTING BECAUSE

THEY ENABLE YOU TO

INTERCEPT VARIOUS

MESSAGES BEFORE THEY

ARE PROCESSED BY

WINDOWS OR DISPATCHED

TO AN APPLICATION. WITH

THIS CAPABILITY YOU CAN

CHECK FOR INTERESTING

KEYSTROKES, MONITOR

APPLICATION OR SYSTEM

MESSAGES, AND RECORD

EVENTS FOR PLAYBACK.

NOVEMBER 1989

MICROSOFT
SYSTEMS
JOURNAL

Figure 1: Filter Functions
scheme, you can define system
hooks that intercept and/or
process the kinds of events
shown in Figure 2.

Once defined, system hooks
are inserted into the chain with
the SetWindowsHook function.
When you call this function you
provide a code that specifies the
type of hook you are installing,
followed by a procedure-
instance address of the appro-
priately defined filter function.
Note that this function must be
exported in the library’s module
definition file. Although librar-
ies can use a function address
directly since they can only have
one data segment, applications
must use MakeProcInstance to
retrieve a procedure instance.

IpfnOldHook = SetWindowsHook
(nHookType,
(FARPROC)HookFn);

The value returned by the
SetWindowsHook function is
the procedure-instance address
of the filter function previously
installed in the chain, if any such
filter exists. This value should
be saved as needed when pass-
ing messages down the chain
with the DefHookProc function.

Of these system hooks, all
but the application message
hook must be defined within the
context of a DLL. The appli-
cation message hook intercepts
only task-specific messages and
is not subject to the same limita-
tions as the other system hooks.

While they are in use, system
hooks can seriously degrade the
performance of Windows. Be-
cause of this, you should restrict
their use to special-purpose
applications or development
tools that help you to debug and
test an application. When you
have finished using a system
hook, you should promptly
remove the filter using the
UnhookWindowsHook
function :

UnhookWindowsHook

(nHookType, (FARPROC)HookFn);

62 FAR PASCAL FilterFunction(nCode, wParam, IParam)

int nCode;
WORD wParam;
LONG IParam;

{
if (nCode == DO_SOMETHING) {

/★*★ DO YOUR PROCESSING HERE ***/

} else
DefHookProc(nCode, wParam, IParam, &lpfn01dHook);

}

Figure 2: System Hook Events 1

Keyboard Hook Any keyboard event j|

Journal Record Hook Any message retrieved from the event queue | |

Journal Playback Hook Any message played back to the event queue If

Application Message Hook Messages to your application

System Message Hook Messages to any application in the system J

Window Procedure Hook Messages to a window function (debug only) 4

Get Message Hook Messages retrieved by GetMessage (debug only) f j

memory considerations under
LIM 4.0, most hook functions
must be in DLLs to ensure that
they are never paged out and
made inaccessible.

Associated with each system
hook is a filter function, an
application-supplied routine
that is installed into a chain of
functions and called whenever
events of a specified type occur.
Filter functions normally have
the format shown in the code in
Figure 1 .

The nCode parameter typi-
cally specifies whether the filter
function should process the
in fo rma t ion or cal l the
DefHookProc function and pass
it back to the system. The
wParam parameter provides
additional information on the
event, usually defining the con-
text in which the event occurred.
Finally, the IParam parameter is
used to transfer additional infor-
mation that further clarifies the
event in question. This could be
a far pointer to a message data
structure or simply a set of
binary flags that describe the
event. Using this fil tering

a start

BX Requested stack size
Requested heap size
Handle to application instanceDI

ES

Figure 4: CPU Registers for Liblnit

DI Handle to library instance
DS Library data segment
CX Requested heap size
ES:SI Pointer to command line

NOVEMBER 1989

Figure 5: PRTSC1.ASM Source Code

63; WINDOWS SCREEN CAPTURE - DYNAMIC LIBRARY

; LANGUAGE : Microsoft Assembler 5.1
; SDK : Windows 2.03 SDK
; MODEL : small
; STATUS : operational

PRTSC Library
The PRTSC utility consists of

a single DLL that contains one
assembly language and four
conventional C functions. Of
these five routines, the keyboard
hook function is perhaps the
most interesting and unusual.

Although DLLs like PRTSC
form the basis of the Windows
API, programmers who are new
to Windows seldom understand
them. This is partly due to the
fact that they can be loaded only
once and are in effect resources
for use by other applications.
Further complicating matters is
the need to write at least one
assembly language routine
when developing a DLL.

When you link a conventional
Windows application with
LINK4, it defines _astart as the
program entry point. This func-
tion is defined in the standard
Windows object library you link
to your program and is respon-
sible for performing the
required housekeeping chores
prior to calling WinMain, the
perceived entry point for the
application. When _astart is
called, the CPU registers are
defined as shown in Figure 3.

Unfortunately, a DLL like
PRTSC requires a different
scheme. By design, PRTSC, like
all other libraries, operates
without a stack segment, using
the caller’s stack in place of its
own. This difference is reflected
in the use of LIBRARY instead
of NAME for the program name
in the module definition file
PRTSC.DEF.

When you make this change,
LINK4 is instructed to use
Liblnit as the program entry
point in place of _astart and to
define the CPU registers as
shown in Figure 4. Liblnit,
defined in PRTSC1.ASM (see
Figure 5), is then responsible for
performing any required house-
keeping, including initialization
of the local heap. Unfortunately,

f

Extrn PrtScInit:Near

_TEXT SEGMENT BYTE PUBLIC ’CODE’
ASSUME CS:_TEXT
PUBLIC Liblnit

Liblnit PROC FAR

Push DI hlnstance
Push DS Data Segment
Push CX Heap Size
Push ES
Push SI Command Line

Call PrtScInit

Ret

Liblnit ENDP
_TEXT ENDS

End Liblnit

this subtle variation and the sub-
sequent assembly language pro-
gramming have prevented some
people from experimenting with
DLLs.

With some extra code, the
Windows object library could
include an entry point for DLLs
that performs this initialization
and calls something like Liblnit
with the library instance handle
and a pointer to the command
line. The programmer would
then write Liblnit in his or her
favorite language and perform
any desired initialization steps
before returning control to the
system. In the case of PRTSC,
Liblnit simply calls PrtScInit,
which is defined in PRTSC2.C ,
where all library initialization is
performed. See excerpts in
Figure 6. (The full source code
can be downloaded from any of
the MSJ bulletin boards—Ed.)

During initialization PrtScInit
checks the current display
adapter type, activates the key-
board hook, and iteratively
searches for the MS-DOS®
Executive window. The search
ends when it has found the win-
dow, which is identified by the
Session class name. Note that

ONCE DEFINED, SYSTEM
HOOKS ARE INSERTED INTO

THE CHAIN WITH THE
SETWINDOWSHOOK

FUNCTION. WHEN YOU CALL
THIS FUNCTION YOU

PROVIDE A CODE THAT
SPECIFIES THE TYPE OF

HOOK YOU ARE INSTALLING,
FOLLOWED BY A

PROCEDURE-INSTANCE
ADDRESS OF THE

APPROPRIATELY DEFINED
FILTER FUNCTION. NOTE

THAT THIS FUNCTION MUST
BE EXPORTED FROM THE

LIBRARY'S MODULE
DEFINITION FILE.

NOVEMBER 19X9

MICROSOFT
SYSTEMS
JOURNAL

Figure 6: Excerpts from PRTSC2.C Source Code

64 Istrcmp is used instead of strcmp
because the szClassName vari-
able is defined on the stack and is
not directly accessible when
using a near pointer (remember
that SS != DS in DLLs).

Using the handle to the MS-
DOS Executive window,
PrtScInit appends a Screen
Capture... menu option to the
end of the Special pull-down
menu and subclasses the entire
window. This effectively
enables the library to intercept
any message sent to the Exec-
utive window, including the
message generated by our newly
appended option.

Although this may not be the
most cooperative way to display
the screen capture control panel,
it demonstrates how one appli-
cation, in this case a library, can
subclass another. However, this
is probably not an acceptable
programming practice for a
commercial application.

The next function in
PRTSC2.C is PrtScFilterFn.
This routine effectively filters
all of the messages sent to the
MS-DOS Executive window.
The only two messages of
interest are the ones generated
when the user selects the Screen
Capture... menu option or when
the window is destroyed.

When subclassing an appli-
cation with a function like
PrtScFilterFn, there are four
ways in which messages can be
handled, as shown in Figure 7.
The first message PrtScFilterFn
intercepts is the one generated
when the user selects the Screen
Capture... menu option from the
MS-DOS Executive window. In
this case it displays a dialog box
using the PrtSc dialog box tem-
plate contained in the resource
file appended to the library.
Because the CMD_CAPTURE
message is of interest only to the
PRTSC library, it is not passed
to the real window function.
Also note that because the
PRTSC library, like most other

#include <windows.h>
♦include <string.h>
♦include "prtsc.h"

/* global data */
BOOL bMono;
WORD wArea;
WORD wColors;
HWND hWndDOS;
HANDLE hlnstance;
FARPROC IpfnDOSWnd;
FARPROC IpfnOldHook;

/* Convert to monochrome? */
/* Current capture area */
/* Number of system colors */
/* Handle to DOS session */
/* Library instance handle */
/* DOS session function */
/* Old hook function */

/* PrtScInit(hLiblnst, wDataSegment, wHeapSize, IpszCmdLine) : BOOL
This function performs all the initialization necessary to use the
screen capture dynamic-link library. It is assumed that no local heap is
used; therefore there is no call to Locallnit. A nonzero value is
returned if the initialization is successful. */

BOOL PASCAL PrtScInit(hLiblnst, wDataSegment, wHeapSize, IpszCmdLine)
HANDLE hLiblnst;
WORD wDataSegment;
WORD wHeapSize;
LPSTR IpszCmdLine;

{
extern BOOL
extern WORD
extern WORD
extern HWND
extern HANDLE
extern FARPROC
extern FARPROC

bMono;
wArea;
wColors;
hWndDOS;
hlnstance;
IpfnDOSWnd;
IpfnNewHook;

HDC hDC; /* Handle to temporary DC */
HWND hWndFocus; /* Window that has focus */
char szClassName[32]; /* Temporary class name */

/* Initialization - Alt = PrtSc active */
bMono = FALSE;
wArea » CAPTURE_WINDOW;
hlnstance = hLiblnst;

IpfnOldHook = SetWindowsHook(WH_KEYBOARD,(FARPROC)PrtScHook);

hWndFocus = GetFocus();

hDC = GetDC(hWndFocus);
wColors = GetDeviceCaps(hDC, NUMCOLORS);
ReleaseDC(hWndFocus, hDC);

/* PrtScFilterFn(hWnd, wMessage, wParam, IParam) : LONG FAR PASCAL
This window function processes all the messages received by the MS-DOS
session window. When the user selects the Screen Capture. . . menu option
this function displays the screen capture control panel. All other
messages are passed on to the window without modification. */

LONG FAR PASCAL PrtScFilterFn(hWnd, wMessage, wParam, IParam)
HWND hWnd;
WORD wMessage;
WORD wParam;
LONG IParam;

{

/* Trap appropriate messages */
switch(wMessage)

{
case WM_COMMAND : if (wParam == CMD_CAPTURE)

{
DialogBox(hlnstance, "PrtSc", hWndDOS,

PrtScDlgFn);

NOVEMBER 1989

Figure 6
DLLs, has only one data
segment, the dialog box is
displayed without creating a
procedure instance (using
MakeProcInstance) of the
dialog box window function.

The second message that
PrtScFilterFn intercepts is the
WM_DESTROY message. In
this case, screen capture is auto-
matically turned off (assuming
it is active) and the MS-DOS
Executive window filter func-
tion is removed. This ensures
that screen capture is not left
active without a means of
controlling it.

Most of the intercepted
messages are ignored by
PrtScFilterFn and passed to the
real window function; other-
wise, the window would not
work and the system would
probably stop.

Following the PrtScFilterFn
in PRTSC2.C is the PrtScDlgFn
function. This routine is respon-
sible for processing all the
messages relating to the screen
capture control panel that is
displayed when the Screen
Capture. . . menu option is
selected. In this function, the
keyboard hook function is
inserted or removed when the
user selects a new screen capture
mode. Again, note how the
PrtScHook function is used
d i r ec t l y , w i thou t ca l l i ng
MakeProcInstance to create
a procedure-instance address.

The l a s t f unc t ion in
PRTSC2.C is PrtScHook. This
is the most complicated routine
in the library; it is responsible
for intercepting each keystroke
and checking whether it is the
Alt-PrtSc key combination.

The first thing this function
does is examine the nCode
parameter to see if some action
is expected. If so, the virtual
keycode and corresponding
keyboard state are examined to
see if Alt-PrtSc has been
entered. When encountered, the
top-level window handle is

65return(OL);
}
break;

case WM_DESTROY : /* Window being destroyed - unhook
everything */

if (wArea)
{

wArea = CAPTURE_OFF;
UnhookWindowsHook(WH_KEYBOARD,

(FARPROC)PrtScHook);
}
SetWindowLong(hWndDOS, GWL_WNDPROC,

(LONG)IpfnDOSWnd);
break;

default :
break;
1

/* Pass message on to window */
return(CallWindowProc(IpfnDOSWnd,

hWndDOS, wMessage, wParam, IParam));

/* PrtScDlgFn(hDlg, wMessage, wParam, IParam) : BOOL;
This function processes all the messages that relate to the PrtSc
dialog box. This function inserts or removes the keyboard hook
function, depending on the user's selection. */

BOOL FAR PASCAL PrtScDlgFn(hDlg, wMessage, wParam, IParam)
HWND hDlg;
WORD wMessage;
WORD wParam;
LONG IParam;

switch(wMessage)
{
case WM_INITDIALOG : /* Initialize dialog box */

CheckDlgButton(hDlg, DLGSC_MONOCHROME, bMono);
EnableWindow(GetDlgItem(hDlg,DLGSC_MONOCHROME),

(wColors >2));
CheckRadioButton(hDlg, DLGSC_OFF, DLGSC_SCREEN,

DLGSC_OFF + wArea);
break;

case WM_COMMAND : /* Window command */

/* Process submessage */
switch(wParam)

{
case DLGSC_OFF : /* Turn screen capture off */

if (wArea)
{
wArea = CAPTURE_OFF;
UnhookWindowsHook(WH_KEYBOARD,

(FARPROC)PrtScHook);
EnableWindow(GetDlgltern(hDlg,

DLGSC_MONOCHROME), FALSE);
}
CheckMenuItem(GetMenu(hWndDOS), CMD_CAPTURE,

MF_UNCHECKED);
break;

case DLGSC_CLIENT : /* Capture client area of active window */
case DLGSC-WINDOW : /* Capture active window */
case DLGSC_SCREEN : /* Capture entire screen */

if (!wArea)
{
IpfnOldHook = SetWindowsHook(WH_KEYBOARD,

(FARPROC)PrtScHook);
EnableWindow(GetDlgltem(hDlg,

DLGSC_MONOCHROME),
(wColors >2));

}

NOVEMBER 1989

MICROSOFT
SYSTEMS
JOURNAL

■■sfsnnnniwnHi |

wArea = wParam - DLGSC_OFF;
CheckMenuItem(GetMenu(hWndDOS), CMD_CAPTURE,

MF-CHECKED);
break;
case DLGSC__MONOCHROME : /* Capture image in

monochrome */
bMono = ’bMono;
break;

case IDOK :
EndDialog(hDlg, TRUE);
break;

default : /* ignore everything else */
break;

}

break;
default : /* message not processed */

return(FALSE);
break;

}

/* normal return */
return(TRUE);

Figure 6
determined and the screen coor-
dinates of the capture area calcu-
lated. In cases where window
boundaries extend beyond the
screen dimensions, appropriate
clipping is performed to ensure a
completely defined image.

The remainder of the function
is devoted to copying the screen
image and placing it on the
Windows clipboard. When this
is completed, the clipboard is
closed, which causes a
WM.DRAWCLIPBOARD
message to be sent down the
clipboard viewer chain. All
associated resources are then re-
moved. If any part of this
process fails, a message box is
displayed, providing some feed-
back to the user on the problem
that was encountered.

Building PRTSC
Building a DLL is only

slightly different from con-
structing a traditional Windows
application. Before doing this,
however, you will need to enter
or download the following
source files: PRTSC (make file),
PRTSC.DEF (module defini-
tion file), PRTSC.H (header
file), PRTSC.RC (resource file),
PRTSC1.ASM (assembly lan-
guage startup code), and
PRTSC2.C (C source code).

In addition to these source
files, you must install the
following software tools on
your system: Microsoft Macro
Assembler Version 5.0 or later,
Microsoft C Compiler Version
5.0 or later, and the Microsoft
Windows Software Develop-
ment Kit (SDK) Version 2.03 or
later. When you have all the
tools and source files in place,
you can create the PRTSC
library by entering the following
command:

MAKE PRTSC

Using PRTSC
Once you have created the

PRTSC library, try it out by
running Windows and double

66

/* PrtScHook(nCode, wParam, IParam) : WORD
This function is called whenever the user presses any key. The Alt = PrtSc
key combination is trapped, and a bitmap copy of the desired portion of
the screen is copied to the clipboard. The return value is FALSE if the
message should be processed by Windows; the return value is TRUE if the
message should be discarded. */

WORD FAR PASCAL PrtScHook(nCode, wParam, IParam)
int nCode;
WORD wParam;
LONG IParam;

{
extern BOOL bMono; /* Convert to monochrome? */
extern WORD wArea; /* Area to capture */
extern FARPROC IpfnOldHook; /* Old keyboard hook */
WORD uWidth; /* Width of bitmap */
WORD uHeight; /* Height of bitmap */
WORD wDiscard; /* Return value */
POINT ptClient; /* Client point */
RECT reWindow; /* Window rectangle */
HDC hScreenDC; /* Handle to screen DC */
HDC hMemoryDC; /* Handle to memory DC */
HWND hActiveWnd; /* Handle to active window*/
HBITMAP hOldBitmap; /* Handle to old bitmap */
HBITMAP hMemoryBitmap; /* Handle to memory bitmap*/

if (nCode == HC_ACTION)
{

/* This check traps the Alt = PrtSc key combination using bit
29 for the Alt key and bit 31 for the key being released. */

if ((wParam==VK_MULTIPLY) && ((IParam&OxAOOOOOOO)
==0xA0000000))

{

case CAPTURE_WINDOW :
/* Retrieve active window dimensions */

GetWindowRect(hActiveWnd,&rcWindow);

break;

case CAPTURE-SCREEN :
/* Retrieve dimensions of entire screen */

rcWindoW.top = 0;
reWindow.left = 0;

NOVEMBER 1989

Figure 6

T_HEIGHT;

J_WIDTH)
I_WIDTH;

(reWindow.

I-HEIGHT)

uWidth =
uHeight

NULL,
NULL

(hMemo ry DC && hScreenDC)

hMemoryBitmap = CreateComp
hMemo ryDC

hMemo ryBitmap

(hMemo ry DC,
hMemoryBitmap);

uWidth,
height

SRCCOPY);ROP

67clicking PRTSC.EXE. When
PRTSC is loaded, a small
message box will be displayed
in the center of your screen
indicating that the Alt-PrtSc key
combination is available for
screen capture to the clipboard.

If you select the Screen Cap-
ture... option under the Special
pull-down menu of the MS-
DOS Executive window, you
can view the current settings,
turn screen capture off, or select
another capture mode. The
Screen Capture menu option
will be checked whenever Alt-
PrtSc is active.

If you run additional MS-
DOS Executive windows after
loading PRTSC, the Screen
Capture... menu option will be
listed only on the first instance.
If you accidentally close this
instance, screen capture will be
turned off and you will no longer
be able to load the library; only
one instance of a library is
allowed, and it has already been
loaded. With a little effort, you
can enhance the PRTSC library
to prevent a lock-out by sub-
classing a second MS-DOS
Executive instance when the
first window is closed.

Another feature of the PRTSC
library you can experiment with
is the monochrome conversion
option, assuming you have a
color display system. As you can
imagine, the capture of color
screen images to the clipboard
can consume large amounts of
system memory. Also, many
Windows applications handle
such bitmaps incorrectly,
especially when they are trans-
ported in files to computers with
different display subsystems.

By choosing the Convert to
Monochrome option you can
automatically convert the screen
images you capture to mono-
chrome by using the conversion
routines built into GDI.
Although in certain cases this
color mapping will produce
unexpec t ed r e su l t s , l ike

NOVEMBER 1989

MICROSOFT
SYSTEMS
JOURNAL

Figure 6
mapping yellow to black, it will
perform acceptably with minor
adjustments to your system
color palette.

You should also try to capture
menus using PRTSC library. If
you hold down Alt-spacebar, the
system menu of the active
window will appear. By keeping
Alt depressed and using the cur-
sor movement keys you can
bring up other pull-down
menus. Still holding Alt down, if
you press PrtSc you can copy the
contents of the visible menu
(perhaps with some other infor-
mation) to the clipboard. You
can then edit out the parts you
don’t want and include the menu
with the documentation asso-
ciated with your application.

68 Closeclipboard();

/* Delete DCs */
if (hMemoryDC)

DeleteDC(hMemoryDC);
if (hScreenDC)

DeleteDC(hScreenDC);

} else
MSGBOX(hWndDOS,

"Unable to open clipboard!");

} else
MSGBOX(hWndDOS,

"Active window is iconic!");

} else
wDiscard = FALSE;

} else
wDiscard = (WORD)DefHookProc(nCode,

wParam,
IParam,
(FARPROCFAR *)
&lpfnOldHook);

/* Return value */
return(wDiscard);

Figure 7: Message Handling

Ignore the message and block it
Ignore the message but pass it on
Handle the message and block it
Handle the message and pass it on ’For ease of reading, “Windows” refers to the Microsoft Windows

graphical environment. ‘Windows” refers to this Microsoft product only
and is not intended to refer to such products generally.

U.S. Postal Service
STATEMENT OF OWNERSHIP, MANAGEMENT AND CIRCULATION

(Required by 39 U.S.C. 3685)

Microsoft Systems Journal
08899932
September 25, 1989
Every other month
Six
$50.00

Title of Publication:
Publication No.:
Date of Filing:
Frequency of Issue:
Issues Published Annually:
Annual Subscription Price:
Complete Mailing Address for Known Office of Publication:
666 Third Avenue, 16th Floor, New York, New York 10017
Complete Mailing Address of the Headquarters of General Business
Offices of the Publisher:
Same
Full Names and Complete Mailing Address of Publisher, Editor,
and Managing Editor:
Publisher and Editor:
Jonathan Lazarus, 666 Third Avenue, 16th Floor, New York, New York 10017
Managing Editor:
Joanne Steinhart, 666 Third Avenue, 16th Floor, New York, New York 10017
Owner:

Microsoft Corporation
16011 NE 36th Way
Box 97017
Redmond, WA 98073-9717

Stockholders having more than 1%:
To the company’s knowledge, the only persons who beneficially own more than 1% of

outstanding common stock are:
William H. Gates III, Paul G. Allen, Steven A. Ballmer, and Jon A. Shirley

8. Known Bondholders, Mortgagees, and other Security Holders Owning or
Holding 1% or More of Total Amount of Bonds: None

IA.
IB.
2.

3A.
3B.

6.

9.
10.

Does not apply

Average No. Copies
Each Issue During
Preceding 12 Months

Actual No. Copies
of Single Issue
Published Nearest to
Filing Date

A. Total No. Copies: 50,231 55,307
B. Paid and/or Requested Circulation

1. Sales through dealers and carriers,
street vendors, and counter sales: 0 0
2. Mail Subscription: 36,678 35,948

C. Total Paid and/or Request Circulation
(Sum 10B1 and 10B2): 36,678 35,948

D. Free Distribution by Mail, Carrier or
Other Means;
Samples, Complimentary, and
Other Free Copies: 6,168 6,799

E. Total Distribution (Sum of C and D): 42,846 42,747
F. Copies not Distributed

1. Office use, left over, unaccounted,
spoiled after printing: 7,385 12,560
2. Return from News Agents: 0 0

G. Total (Sum of E, Fl and 2—should
equal net press run shown in A): 50,231 55,307

11. I certify that the statements made by me are correct and complete.

Steven Pippin, Circulation Director, September 25, 1989

NOVEMBER 1989

CHECKERS PART i 69
Design Goals for Building a
Complete Graphical Application
Charles Petzold

ow about a nice game of checkers?
Soon you will be able to play a game of checkers
under OS/2 Presentation Manager. In the next few
issues of MSJ we will present a complete checkers
program for Presentation Manager (hereafter

referred to as PM) called CHECKERS.EXE. You can play
CHECKERS against yourself, the program, a person across a
network, or an external dynamic-link library that implements a
checkers-playing strategy.

Writing a game program is an excellent way to learn about a
graphical user interface, because games make use of graphics and
are often highly interactive. You can use
this article and the following ones to
create a fun game that demonstrates
many aspects of OS/2 and Presentation
Manager programming, including
graphics, keyboard and mouse input,
menus, dialog boxes, and child
windows. All too often the programs
published in books and magazines are
very short. They show programming
techniques in isolation. These articles,
on the other hand, will illustrate
structure and organization associated
with real-world coding, including the
use of dynamic-link libraries (for the
checkers-playing strategy), named
pipes (for playing the game over a
network), and multiple threads. We’ll
look at algorithms for working with
logical structures that are common in
games, and perhaps even some object-
oriented techniques that will help
generalize several components of the
program. Because of its detail ,
CHECKERS will be longer than any
other program this magazine has published.

This article describes what I intend to put into the program and
some of the problems I expect to encounter. Code with the com-

H
Checkers

Game

Figure 1 A CHECKERS game in progress.

Charles Petzold is the author of Programming Windows
(Microsoft Press, 1988) and Programming the OS/2 Presentation Manager

(Microsoft Press, 1988). A copy of the latter is included in Microsoft's
OS/2 Programmer's Toolkit.

NOVEMBER 1989

MICROSOFT
SYSTEMS
JOURNAL

70 Screen
(Xx F output

— Mouse input

Keyboard
input

User
window

Dynamic-link
library

Supervisor
window

Client
window

DLL access
window

Named pipe
window

Named
PipeGame logs

Menu ___
commands

Figure 2 General CHECKERS program structure. As is usual, menu commands
will be processed by the pro-
gram’s client window. When
you initiate a new game from the
menu, the client window will
inform the supervisor that a new
game has been requested and
who the players will be.

If the game is to be played
from a log file, the supervisor
will be responsible for re-
creating the game. Otherwise,
each of the possible players (the
user, a dynamic-link library, or a
named pipe connection) is
known to the supervisor as a
window handle. Thus, for each
game, the supervisor has two
window handles, one for the
black player and one for the
white player.

Alternating between black
and white, the supervisor will
use a message to notify a player
window when it should make a
move. Depending on who the
players are, these player
windows can get information
about a move from the user, a
dynamic-link l ibrary, or a
named pipe.

The player windows will
inform the supervisor when a
move has been completed. The
supervisor can then notify the
other player window about the
move and request that that win-

ponents of the program that
draws the checkerboard and
playing pieces, as shown in
Figure 1, will be published in the
next issue. Using the additional
user interface code from a future
issue, you’ll be able to play a
game against yourself.

Modes of Play
CHECKERS will feature

several basic modes of play
available from a menu option.
You can:

• Play against yourself, by
alternately playing the black
and white pieces.

• Play against the computer
(the default). The logic of the
checkers-playing strategy
will be implemented in a
dynamic-link library.

• Play against an alternative
dynamic-link library. If you
would like to code your own
checkers-playing strategy,
you can create a dynamic-
link library and hook into it
from CHECKERS.

•Play one dynamic-link
library against another. In
this case, you just sit back and
watch the game.

• Play against another person,
running a copy of CHECK-

ERS across a network. This
facility will use named pipes.

• Re-create a previous game.
CHECKERS will allow you
to store a log of a game (using
standard checkers notation)
as an ASCII file with the
extension CKR. The pro-
gram will also allow you to
load a CHR file, to re-create
the moves of the game at a
speed you define.

Program Structure
Of course, all these options

require that some serious con-
sideration be given to the
program structure. The best
approach seems to be control-
ling games with a “supervisor”
that I intend to implement as a
Presentation Manager object
window. (Object windows are
not visible on the screen, but
they can receive and send
messages like other windows.
You can use an object window to
implement object-oriented pro-
gramming techniques through
Presentation Manager arch-
itecture rather than through the
syntax of your programming
language.) The supervisor will
be responsible for maintaining
the current board layout and
keeping a log of the game.

NOVEMBER 1989

the beginning of a game with
two jumps in the first four
moves:

Black: 10-15
White: 24-19
Black: 15-24
White: 28-19
There are only 32 squares on

which pieces can reside, making
it very convenient to represent
the board in a C program. The
number of black squares corre-
sponds to the minimum number
of bits in a long integer, as re-
quired by the ANSI C standard.
By simply subtracting 1 from
each square number, the board
positions can correspond to the
bits of a long integer, where 0 is
the least significant bit and 31 is
the most significant bit.

Such a representation is dis-
cussed in Christopher S.
Strachey’s paper “Logical or

window and the named pipe
windows will be responsible for
creating these threads.

Notation/Representation
I mentioned earlier that

CHECKERS will be capable of
storing a log of the game in an
ASCII file. This log will use
standard checkers notation,
which is shown in Figure 3. The
black squares are simply num-
bered 1 through 32. The num-
bering makes more sense if you
turn the board around so that
black is on top, as is usually done
when showing checkerboard
layouts in books. (Figure 3 is
shown with black on the bottom
to be consistent with Figure 1.)

A game can be represented by
showing each move with the
starting and ending square num-
bers separated by a dash. Here’s

dow make a move. The super-
visor will also be responsible for
determining when a player has
won a game, and perhaps even
for determining when a game
has ended in a draw.

The general program struc-
ture (as I conceive it now) is
shown in Figure 2. The client
window and the user window
are normal Presentation Man-
ager windows. The supervisor
window, dynamic-link library
access window, and named pipe
window are object windows.

Suppose that you’re playing
black and that your opponent is a
dynamic-link library playing
white. In this case, the super-
visor window has two window
handles: black is the handle of
the user window and white is the
handle of the dynamic-link
library window. The supervisor
sends the user window a
message telling it to make a
move. The user window
displays an appropriate mouse
pointer and waits for you to
make a move. When the move is
completed, the user window
informs the supervisor window
of the move. The supervisor then
sends a message to the dynamic-
link library window requesting a
move. When the dynamic-link
library determines what the
move should be, it sends a mes-
sage back to the supervisor win-
dow. The supervisor informs the
user window of this move so that
the display can be updated. The
supervisor then sends a message
to the user window asking for
the next move.

When one of the players is a
dynamic-link library or another
person over a named pipe, multi-
ple threading will be required
while the supervisor window is
awaiting word of the next move.
The dynamic-link library access

71

WHITE

32■ 31 30■ 29■ 27■ ■ 25■
24■ 23 22■ 21■19■ ■ 17■
16■ 15 14■ 13■ 11■ ■ 9■
8■ 7 6■ 5■ 3■ ■ 1 ■Figure 3

Numbering of squares used
in standard checkers
notation.

BLACK

NOVEMBER 1989

MICROSOFT
SYSTEMS
JOURNAL

Nonmathematical Programs”
originally published in Pro-
ceedings of the Association for
Computing Machinery Confer-
ence, Toronto (1952, pp. 46-49)
and reprinted in Computer
Games I, edited by David N.L.
Levy (Springer-Verlag, 1988).
Although Strachey’s notation is
pretty obvious once you start
working with it, it’s probably
not something I would have
stumbled upon myself.

At any time during a game, the
board can be represented using
three 32-bit integers: white (W),
black (B), and king (K). For
example, at the beginning of a
game, the three integers have the
following values:

B = 00000FFFH
W = FFF00000H
K = 00000000H
There’s a little redundancy in

this notation because each
square requires 3 bits (one in
each of the integers) for a total of
8 different states. In reality, each
square can be only one of 5 states
(empty, black, white, black
king, and white king), but the
notation is so convenient that we
can ignore the waste.

You can apply bitwise opera-
tions to these integers to derive
some other characteristics of the
board. For example, the squares
on which black kings currently
reside can be represented in C
notation as:

B&K
You can determine all the

empty squares (E) using:
E = ~B & ~W
As we’ll see, this type of logic

is very impor t an t in the
CHECKERS program, both in
determining whether a user is
making a legal move and in
determining all possible moves
a piece can make.

For example, there are 9 posi-
tions on the board where an
unkinged black piece can move
from a square position n to a
square position («+3) without

he game of checkers (called draughts in Great Britain) has obscure
beginnings. It possibly originated in the 1500s as a merging of chess and
the Spanish game Alquerque de doze, but it may have come from the

Orient, related to Parcheesi and tic-tac-toe.
Checkers is played on a chess board, which is an 8-by-8 grid of alternating black

and white squares. The squares are not always black and white—the black squares
may be any dark color and the white squares any light color—but the squares are
referred to as black and white regardless of their actual colors. The official colors
in US tournaments are green and buff. I decided to use green and light gray for the
default square colors, as shown in Figure 1.

The two players sit on opposite sides of the board. The board is oriented so that
the edge of the board closest to each player has a black square on the left and a white
square on the right.

The game is played with 12 black pieces and 12 white pieces. (Again, these are
the colors used to refer to the pieces. The actual colors may be different. Some
commercial games of checkers use black and red pieces, but in tournament play the
pieces are usually red and white.) One player controls the black pieces and the other
controls the white pieces.

At the beginning of the game, the pieces are arranged on the 12 black squares
closest to each player, as shown in Figure 1. The players alternate turns, with black
moving first.

Initially, pieces can move forward (that is, towards the opponent’s side of the
board) and to a diagonally adjacent, unoccupied black square. If a diagonally
adjacent black square is occupied by an opponent’s piece, and the black square
beyond that one is unoccupied, a player must move his or her piece to the
unoccupied square. The opponent’s piece is jumped (or captured) and removed
from the board. The move must continue with additional jumps if they are available.

Here’s where the rules get controversial. Many players observe the tradition of
“huffing.” If a jump is available and a player does not take the jump, the opponent
can require that the player take back the move, or that the piece that did not take the
jump be forfeited and removed from the board. However, most contemporary rule-
books take a different approach: if a jump is available, a player must take it, and
must continue jumping opponent’s pieces until no longer able to do so. This is the
rule I will impose in the Presentation Manager CHECKERS program. There will
be no huffing.

When a piece reaches the opponent’s edge of the board, it is kinged or crowned.
This is indicated by placing another piece of the same color on top of the piece.
When apiece is first kinged, its move ends even if it can continue jumping. In subse-
quent moves, kings can move forward or backward along the diagonals.

A player wins after capturing all the opponent’s pieces or when the opponent can
no longer move any piece. Many games between two good players end in draws.
Usually a draw must be decided by a referee based on the inability of either player
to gain any advantage after 40 or 50 moves.

There are some variations of the game. Some versions of checkers allow kings
to make long jumps, passing unoccupied black squares on a diagonal and landing
on the square beyond an opponent’s piece. Sometimes (particularly in Russia), the
game is played on a 10-by-10 board. The PM CHECKERS program will play the
standard game only. v

72

NOVEMBER 1989

If you're a professional software developer,

you should read Microsoft Systems Journal regularly. Every

issue is full of creative technical and theoretical insights so

you can write better programs.

Now is an especially good time to subscribe because you

can take advantage of our discounted inter-

national rates. Fill out the card below

(note that the rate for 2 years

offers a greater discount),

drop it in the mail,
and we’ll start

fKlUrIXfl

your subscription
immediately-

Cr: Add my name to
your subscriber
list. I've checked
the rate and
term I want on
the chart at left.

SYSTEMS JOURNAL

Please check the appropriate box

22UNTRY 1 YEAR RATE 2 YEAR RATE

Australia*
A$ 78 A$ 130

Austria*
Sch 673 Sch 1124

Belgium
BFr 2000 BFr 3340

Denmark
DKr 369 DKr 616

Eire
I£ 44 I£ 73

Finland
FMk 218 FMk 364

France
FFr324 FFr 541

Israel*
IS 99 IS 165

Italy*
Lir 70000 Lir 116900

Japan*
¥ 6750 Y 11273

Netherlands
F125 F 209

Norway
NKr 352 NKr 588

Portugal
Esc 7884 Esc 13166

Spain
Ptas 6000 Ptas 10020

Sweden
SKr327 SKr 546

Switzerland*
SFr 79 SFr 134

United Kingdom £ 33 £ 55

West Germany* DM 90 DM 150

Other European* US$ 65 US$ 109

Other International* US$ 70 US$ 117

Orders accepted at these rates until June 30, 1990

Name

Address

Postal Code

Country

Bl |Mv payment is enclosed

pay when invoiced

Guarantee: If you are ever dissatisfied with MSJ, you’re entitled to

a full refund on the unmailed portion of your subscription.

Note: Offer limited to new subscribers only. Regular price is $50 per year,

plus $15 per year postage. Please allow 8 to 12 weeks for delivery of first

issue. Offer expires July 1, 1990.

*Subscriber must apply return postage. FN9AC1-4

I I III III

NE PAS AFFRANCHIR

NIET FRANKEREN

REPONSE PAYEE

PAYS-BAS

Microsoft Systems Journal
int. Antwoordnummer
C.C.R.I. Numero 454
2130 WB Hoofddorp, Holland

an unkinged piece is counted as
1 and a kinged piece is counted
as a number somewhere be-
tween 1 and 2.

My standards are very low: I
want the CHECKERS program
to beat me (or come to a draw)
most of the time, and that should
not be difficult at all! I claim no
skill in playing checkers. I am
not interested in developing the
best possible checkers-playing
strategy right now. However,
CHECKERS will provide a
framework for others who are
interested in this aspect of the
program. Because the checkers-
playing strategy will be imple-
mented in a dynamic-link
library, readers of MSJ can
develop their own checkers-
playing modules that CHECK-
ERS can easily access. The
interface to this dynamic-link
library will be documented in a
future issue. The game will also
be able to play two dynamic-link
libraries against each other, so
we could conceivably we can
stage checkers tournaments
where the humans would watch
while the programs played.

Now it’s time for this pro-
grammer to stock up on neces-
sary beverages, lock himself in
his room, disconnect the phone,
post a note on his door saying
“E-mail only,” and get to work.
I’ll emerge in time for the next
issue to discuss the code that
draws the checkerboard and the
playing pieces.

may be changed using a menu
option. The checkerboard looks
three-dimensional and is sized
to fit within the client window
while maintaining the correct
aspect ratio.

To move the pieces, you can
use either the mouse or the key-
board. Using the mouse you’ll
be able to pick up a piece from a
square and move it to another
square. The easiest way to do
this would be to have predefined
mouse pointers that look like the
pieces. But the pieces will not
generally be the same size as a
mouse pointer, so PM’s normal
pointer logic can’t be used. In-
stead, you’ll move bitmaps
around the window. CHECK-
ERS will also have a keyboard
interface. You can move the
mouse pointer to a square using
the cursor movement keys, pick
up a piece by pressing the space
bar, move the piece to another
square, and set it down using the
space bar again.

CHECKERS will prevent a
user from making an illegal
move and require that the user
make a jump when one is avail-
able and continue jumping until
no more jumps are possible.
This logic may also be imple-
mented in a Presentation Man-
ager object window.

Playing Strategy
Playing a game against the

program is the feature many
users will find most appealing
about CHECKERS. This fea-
ture requires that the program
include a reasonable checkers-
playing strategy. This strategy
will be as simple as possible,
because PM programming is
difficult enough in itself.

The checkers-playing strat-
egy will look ahead through all
possible moves, counter-moves,
counter-counter-moves, and so
forth (to a level that I’ll have to
determine empirically), and
determine the best move by cal-
culating a simple score, where

jumping an opponent’s piece.
You can represent these posi-
tions with a variable called M:

M = 00E00E00E0H
To calculate the current

unkinged black pieces that
might be able to move to squares
with numbers that are 3 higher
than their current position, use
the following formula:

B&M
To calculate the destinations

of these pieces you can simply
shift left by 3 bits:

(B & M) « 3
But it’s only possible to make

these moves if the destination
square is empty:

((B & M) « 3) & E
Shifting this expression to the

right by 3 bits gives us a 32-bit
integer that describes the posi-
tion of all the current unkinged
black pieces that can move to a
square 3 higher in number:

(((B & M) « 3) & E) » 3
White kings can make these

same moves:
(((W & K & M) « 3) & E) » 3
Of course, this gets more

complex when you take into
account the pieces that can move
to squares that are 4 higher or 5
higher in number, and when
considering the possible jumps.
But the concepts remain the
same. It is an extremely useful
type of representation that
avoids otherwise lengthy logic.

Visuals and Interaction
As you can see in Figure 1,

CHECKERS will feature a
checkerboard in its client win-
dow. The window that draws the
board and receives keyboard
and mouse input will be a child
of the client window. The super-
visor communicates with this
child window and two others to
request information about
moves and to inform the win-
dow about moves made by the
opponent. The board’s colors

73

NOVEMBER 1989

We don’t have an
athletic department,but
our graduates get a jump
on everyone in their field.

Microsoft University brings the institution of
higher learning to an even higher plane. It’s a place
where programmers and developers leam about
Microsoft systems software straight from the
source: from instmctorswath firsthand knowledge
of what drives Microsoft systems software.

Our instructors take you through intense,
hands-on courses that concentrate on the develop-
ment ofMicrosoft® OS/2 andMicrosoft Windows
applications.

You gain insight and expertise writing software
in environments such as MS* OS/2, MS OS/2
LAN Manager and MS OS/2 Presentation Man-
ager. As well as Microsoft Windows/286 and
Windows/386.

Courses take place in a lab setting so you not
only leam theory, you also gain practical experi-
enceby actually writing software. And courses are
offered for different levels of expertise.

To receive more information and a copy of the
Microsoft University catalog, call 206-882-8080!
And if you or your team cannot attend classes at
one of our facilities, be sure to ask about our on-site
customer training program or video training
course that is available.

Either way, we’re going to make sure you leam
the nuts and bolts of Microsoft systems. So you
can make great leaps in your field.

MkmsoftUniversity'

© 1988 Microsoft Corporation. All rights reserved. Microsoft, the Microsoft logo, and MS are registered trademarks of Microsoft Corporation. fWritten requests for information should go to
Microsoft University, Registrar, BOX 97017, Redmond, UA 98073-9717.

75SpyGlass: A Utility for Fine
Tuning the Pixels in a
Graphics Application
Kevin P. Welch

0 ne of the most t ime-consuming aspects of
programming in the Microsoft® Windows™ environment is
getting things to look just right on the screen. Invariably (it
seems) any user interface change creates alignment problems
requiring several tweaks of one or two pixels before correct

alignment is restored. Although such off-by-one errors are easy to see on a
coarse, low-resolution display, they become a little more difficult when using
a high-quality one with resolution in excess of 100 pixels per inch.

SpyGlass is a BLOWUP.EXE inspired utility (see “BLOWUP: A
Windows Utility for Viewing and Manipulating Bitmaps,” MSJ Vol. 2 No.
3) that enables you to enlarge selected portions of your display dynamically
while maintaining a constant pixel-to-aspect ratio. In addition, it serves as a
simple demonstration of several subtle graphics
device interface (GDI) programming techniques that
might be of use in your own applications. And
although SpyGlass won’t eliminate off-by-one
errors, it will make them a little easier to find when
tuning your application.

Using SpyGlass
To use SpyGlass, click inside the window client

area with the left mouse button. A small rectangle (in
proportion to the SpyGlass window) will appear in
place of the mouse cursor. Then, while the left button
is depressed and you drag the mouse around, the
rectangle acts like a cursor. It becomes a magnifying
glass, dynamically magnifying whatever portion of
the display it covers, thereby enlarging the images in
the SpyGlass window.

If you click the right button while dragging the
mouse, the screen image enclosed by the magnifying
glass will be enlarged inside the SpyGlass window.
You can click the right button as many times as you like, taking pictures of
various portions of the display (see Figure1). If you hold down the right button
while dragging the mouse, a continuous series of enlargements is produced
inside the viewport. The enlargements may appear a little jerky on an 80286-
based computer, but they look quite nice on an 80386 machine—especially
one with a hardware graphics coprocessor.

Releasing the left button when you finish dragging the mouse will copy the
final image from the SpyGlass window to the clipboard. If you want to

Figure 1 SpyGlass enlarges a
portion of the MS-DOS Executive.

Kevin P. Welch is a computer scientist specializing in applied mathematics, robotics, and
artificial intelligence. President of Eikon Systems, Inc., and a doctoral candidate in applied

mathematics, he has written numerous articles on a variety of technical subjects.

NOVEMBER 1989

MICROSOFT
SYSTEMS
JOURNAL

Microsoft C Compiler (Version
5.0 or later). Before construc-
ting the program with the
MAKE SPYGLASS command,
you will need the files listed in
Figures. (The files are available
for downloading from any of the
MSJ bulletin boards— Ed.)

Structurally, SpyGlass is a
relatively simple program,
acting in most situations like a
bitmap clipboard viewer. Inter-
nally, SpyGlass consists of only
two functions—a main pro-
cedure that defines the SpyGlass
window and retrieves or
dispatches all application
messages, and a function that
processes all window-related
messages.

Throughout the source code,
note the use of the macros
defined in SPYGLASS.H . The
WIDTH and HEIGHT macros
(see Figure 4), for example,
compute the corresponding
width and height of a given
rectangle, respectively. Both
use a feature of the C compiler
preprocessor called token
pasting. To see how token past-
ing works, note that each
instance of the variable x is
preceded by a double number
sign (##). When the ## is inter-
preted by the preprocessor, it
allows tokens to be used as
actual arguments that can be
concatenated to form other
tokens. Without this replace-
ment capability, you would not
be able to access the individual
structure elements of a token
within a macro.

As is the case with most Win-
dows applications, the SpyGlass
window message processing
function is the heart of the
program. From an operational
perspective, four major events
are of interest; they are listed in
Figure 5 and discussed below.

SpyGlass is activated when
the left mouse button is
depressed inside the window
client area. This causes a
WM.LBUTTONDOWN mes-

76 Magnifying Glass - lx zoom SpyGlass Client Area

Zx zoom

4x zoom

8x

Figure 2 Increasing the enlargement ratio makes the magnifying glass
proportionately smaller.

of the SpyGlass client area,
adjusted by the currently selec-
ted magnification or enlarge-
ment factor. When the zoom
factor is one, the interior portion
of the magnifying glass is the
same size as the SpyGlass client
area. As you increase the
enlargement ratio, the magni-
fying glass becomes proportion-
ally smaller (see Figure 2).

Although the current imple-
mentation of SpyGlass supports
only a small number of enlarge-
ment ratios, you could easily
change the source code to
include a wider range. If you
experiment with other values, be
aware that SpyGlass will be
most efficient when using
powers of two for enlargement
factors. This is because the
underlying StretchBlt function
operates best when doubling or
quadrupling each pixel size
instead of performing many
fractional enlargements. If you
get even more adventurous, you
could experiment with values
less than one.

Understanding SpyGlass
To build SpyGlass, you will

need the Microsoft Windows
Version 2.1 Software Develop-
ment Toolkit (SDK) and a

capture different sized images,
you can change the magnifying
glass proportions by adjusting
the SpyGlass window dimen-
sions or by selecting a different
enlargement factor from the
application’s system pull-down
menu.

Coordinate Systems
Each Windows application

maintains its own coordinate
system. SpyGlass is no excep-
tion. But unlike most other
Windows applications, Spy-
Glass performs all its work in
screen or display coordinates.

The origin for most appli-
cation coordinate systems is
defined as the upper-left comer
of the client area. Although this
is normally adequate when you
work within your own window,
it is insufficient for SpyGlass
since the magnifying glass can
roam all over the display.
Therefore, both the magnifying
glass and the viewport area are
defined in terms of screen or dis-
play coordinates (DC). This en-
ables SpyGlass to use the screen
display context or DC when per-
forming each enlargement.

As mentioned previously, the
size of the magnifying glass is
determined by the dimensions

NOVEMBER 1989

Figure 3: Files Needed to Construct SpyGlass ______________1

SPYGLASS Make file for application
SPYGLASS.DEF Module definition file s
SPYGLASS.H Header file !
SPYGLASS.RC Application resource file i
SPYGLASS.C Source code
SPYGLASSJCO Icon referenced by resource file ’

sage to be sent to the application.
Since it is possible to receive
extraneous mouse messages, a
check is made to see if the win-
dow is in an inactive state. If it is,
mouse capture is enabled via a
SetCapture function call. This
causes the next important event:
notifying the window of all sub-
sequent mouse movements via a
series of WM_MOUSEMOVE
messages.

Mouse movements are cap-
tured by SpyglassWndFn. Since
SpyGlassWndFn is by nature
reentrant (or called before it
returns), a Boolean flag is set to
indicate the active window state.
This allows the function to
screen out unwanted messages,
acting only on those of
immediate interest.

Besides capturing mouse
movements, SpyGlassWndFn
defines both the viewport and
the magnifying glass rectangles
in screen coordinates. The view-
port region is calculated by
retrieving the window client
area (in client coordinates) and
converting them to screen coor-
dinates. The magnifying glass
region is also based on the size of
the window client area, but it is
adjusted using the selected
enlargement factor and by align-
ing the origin with the current
mouse position. The resulting
rectangle is then used to replace
the normal mouse cursor.

Note how the magnifying
glass dimensions are enlarged
by one pixel in each direction.
This allows the program to work
with the interior of the rectangle
without erasing the inverted line
around the border. The resulting
visual effect is considerably
smoother and eliminates unnec-
essary redrawing.

When the magnifying glass
rectangle is tied to the mouse
and WM_MOUSEMOVE mes-
sages are received, the rectangle
is hidden and then redrawn in the
new mouse position. Before
processing the message, the

77

Figure 4: WIDTH and HEIGHT Macros | ' : ' - T;

#define
#define

WIDTH(x)
HEIGHT(x)

(##x.right - ##x.left) f|
(##x.bottom - ##x.top)

Figure 5: Response to Each Windows Message 1

Message
WM LBUTTONDOWN
WM RBUTTONDOWN
WM MOUSEMOVE
WM LBUTTONUP

Response j;
Mouse capture activated H
Selected portion of screen enlarged | f
Magnifying glass moved U
Mouse capture deactivated

function checks whether the
capture flag is set. This check
allows it to distinguish the
message from those mouse
messages received when cap-
ture is inactive.

Operationally, the mouse
movement messages are
handled in two different ways. If
the magnifying glass intersects
the SpyGlass window, it is
redrawn after the viewport has
been updated. This additional
delay (associated with the over-
head of transferring the screen
image from the magnifying
glass to the viewport) causes the
magnifying glass to flicker and
appear unresponsive. If the
magnifying glass does not inter-
sect the SpyGlass window, it is
immediately repositioned, fol-
lowed by the transfer of the
screen image to the viewport
(see Figure 6).

An earlier version of
SpyGlass did not attempt to take
advantage of those two situa-
tions. Instead, it only redrew the
magnifying glass after updating
the viewport. But several users
commented on the unresponsive
magnifying glass, prompting
this algorithmic change and
resulting additional complexity

THE ORIGIN FOR MOST
APPLICATION COORDINATE

SYSTEMS IS DEFINED AS
THE UPPER-LEFT CORNER
OF THE CLIENT AREA. THIS

IS INSUFFICIENT FOR
SPYGLASS SINCE THE

MAGNIFYING GLASS CAN
ROAM ALL OVER THE

DISPLAY. THE MAGNIFYING
GLASS AND THE VIEWPORT

AREA ARE DEFINED IN
TERMS OF SCREEN OR

DISPLAY COORDINATES,
WHICH ENABLES SPYGLASS

TO USE THE SCREEN
DISPLAY CONTEXT OR DC

FOR EACH ENLARGEMENT.

NOVEMBER 1989

MICROSOFT
SYSTEMS
JOURNAL

herently faster than StretchBlt,
especially when implemented
by the device driver at the
hardware level.

The final event of interest
occurs when the left mouse
button is released at the end of a
drag operation. The resulting
WM_LBUTTONUP message
causes the mouse capture to be
released, the magnifying glass
to be erased, and the original
cursor to be restored. In
addition, the final viewport
image is copied to a bitmap,
which is subsequently trans-
ferred to the clipboard.

One critical step of clipboard
data management should be
emphasized. This involves the
handling of the memory bitmap
containing the viewport image.
Note how this bitmap is un-
selected from the memory dis-
play context before being placed
on the clipboard. Bitmaps that
are transferred to the clipboard
while they are selected in a
display context are usually
inaccessible to members of the
clipboard viewer chain, poten-
tially causing some unusual data
management problems.

You should know that calling
SetClipboardData causes the
immediate transmission of a
WM.DRAWCLIPBOARD
message down the clipboard
viewer chain. Since SpyGlass is
a member of the viewer chain,
the capture flag is not reset until
SetClipboardData returns. This
eliminates an extra update of the
SpyGlass client area; an update
that would be visible to the user.

Variations
Once you understand the

inner workings of SpyGlass,
you might want to try some
experiments with the program.
One interesting effect can be
achieved when you set the
enlargement factor to one and
capture recursive images of
SpyGlass itself. The resulting
display is very much like point-

78 SpyGlass Client Area

Magnifying Glass

Magnifying Glass
Non-Intersecting:
Redraw Immediate y

Intersecting Case:
Delayed Redraw

Figure 6 If the magnifying glass intersects the SpyGlass client area,
it is redrawn after a delay; if it does not intersect the window it is redrawn
immediately.

to the program. Unfortunately,
this seems to be the case with
many other user-interface
issues: in theory they are simple,
but they actually require
considerably more tuning than
one might expect.

One situation still ignored by
SpyGlass is when the magni-
fying glass extends beyond the
borders of the display. Currently
the results produced are highly
dependent on the characteristics
of the active display driver.
Some drivers automatically
erase areas outside the screen,
others leave them as they were,
and still others leave them
undefined. Typically, issues
such as this only surface during
the last few weeks of beta testing
and sometimes they stay
unresolved indefinitely.

Another event of interest
occurs when the right mouse
button is depressed. This sends a
WM_RBUTTONDOWN mes-
sage to SpyGlassWndFn. If the
magnifying glass is active, the
selected portion of the screen is
enlarged in the viewport. As
with the WM_MOUSEMOVE
message, the magnifying glass
is hidden if it intersects with the
SpyGlass client area. Note how
the BitBlt function is used in
place of StretchBlt to transfer
the screen image when the en-
largement factor is one. This is
because the BitBlt function is in-

ONE CRITICAL STEP OF
CLIPBOARD DATA

MANAGEMENT SHOULD
BE EMPHASIZED. THIS

INVOLVES THE HANDLING
OF THE MEMORY BITMAP

CONTAINING THE VIEWPORT
IMAGE. NOTE HOW THIS
BITMAP IS UNSELECTED

FROM THE MEMORY DISPLAY
CONTEXT BEFORE BEING

PLACED ON THE CLIPBOARD.
BITMAPS THAT ARE

TRANSFERRED TO THE
CLIPBOARD WHILE

SELECTED IN A DISPLAY
CONTEXT ARE TYPICALLY

INACCESSIBLE TO MEMBERS
OF THE CLIPBOARD

VIEWER CHAIN,
POTENTIALLY CAUSING
SOME UNUSUAL DATA

MANAGEMENT PROBLEMS.

NOVEMBER 1989

ing a high-quality video camera
at its own output monitor (see
Figure 7).

If you are a little more
adventurous, you can change
SpyGlass, disabling some of the
subtleties discussed earlier with
a few well-placed comments. If
you try this, it will be clear that
the additional complexity does
make a difference and trans-
forms a good implementation
into a great one.

If you feel even more intrepid,
you can try converting SpyGlass
to run under OS/2 Presentation
Manager (hereafter PM). In
addition to the normal Windows
to PM conversion tasks, you will
have to pay attention to a few
important details.

The first of these details
involves the way in which PM
handles menus. When you
convert SpyGlass you will have
to retrieve the handle to the sub-
menu in the zero position of the
system menu explicitly before
you can attach and manipulate
the various enlargement com-
mands. Second, instead of creat-
ing a new display context for the
DISPLAY device, you will be
able to retrieve a handle to the
screen presentation space
directly. And when working
with this presentation space, you
will be able to use a single
GpiBitBlt function call in place
of the Windows BitBlt and
StretchBlt equivalents.

Third, since PM doesn’t
support the clipboard viewer
chain concept, you will have to
remove all the code that relates
to the clipboard viewer chain.
OS/2 systems contain pro-
visions for only one active clip-
board viewer. Finally, when you
try to place the final bitmap
image on the clipboard, you will
have to go through a compli-
cated process of retrieving a
memory display context (for
further information, refer to the
SNAP.EXE source code distrib-
uted with the Microsoft OS/2

79

Figure 7 The image after setting the enlargement factor to one and
capturing repeated images of SpyGlass itself.

Software Development Kit
Version 1.1).

The end result of your
changes to SpyGlass will be a
program that acts much the same
in both Windows and PM. The
same underlying design and
tuning principles used with the
Windows version apply equally
well to PM. In addition, these
enhancements can also be
applied in your own appli-
cations. Although these subtle
refinements are easy to perform
with SpyGlass, performing such
magic with a large application
can be extremely time-consum-
ing. But the results are well
worth the extra effort.

ONCE YOU UNDERSTAND
THE INNER WORKINGS

OF SPYGLASS, YOU MIGHT
WANT TO TRY SOME
EXPERIMENTS. ONE

INTERESTING EFFECT CAN
BE ACHIEVED WHEN YOU
SET THE ENLARGEMENT

FACTOR TO ONE AND
CAPTURE RECURSIVE
IMAGES OF SPYGLASS

ITSELF. THE RESULT IS LIKE
POINTING A HIGH-QUALITY

VIDEO CAMERA AT ITS
OWN OUTPUT MONITOR.

NOVEMBER 1989

MICROSOFT
SYSTEMS
JOURNAL

The additions to the begin-
ning of the work segment do not
have too great an impact on the
remaining space. A large num-
ber of filespecs (perhaps 20)
with long paths (say an average
of 50 characters each) would
occupy about 1000 bytes—
leaving 64,535 bytes for the
resulting filenames after expan-
sion. Thus, the workspace avail-
able to the server when it first
calls DosFindFirst is 65,535
minus the space occupied by the
filespecs and paths.

Just before DiSendRequest
places a request in the server’s
queue, it adjusts the server’s
workspace pointer to an offset
beyond the paths and filespecs
in the work segment. As I indi-
cated earlier, the server asks
DosFindFirst to return, in one
call, all files found that match
the filespec. After each call, the
server adjusts the workspace
pointer to point beyond the most
recent FILEFINDBUF results.
Thus, each call to DosFindFirst
in a request uses a smaller buffer
space that is found at offsets
further and further into the work
segment. When a server thread
is finished with a request, it cal-
culates the space occupied by
the results in the work segment
and stores that result in the
request header for use by
DiSendRequest. Then it clears
the request header semaphore,
frees the header and work seg-
ments, and terminates itself.

At this point, the client owns
both segments; OS/2 will not
discard shared segments until
both processes have freed them.
It would be ideal if the client
could adjust the work segment
down to the size occupied by the
results of the request—there’s
no need for a 64Kb segment if
only 4Kb, 16Kb, or even 20Kb
are being used. Unfortunately,
you cannot use DosReallocSeg
to shrink a shared segment.
Therefore, as soon as the server
thread handling the request has

freed the work segment and is
about to free the header segment
and terminate itself, it prepares a
new work segment, which is the
same size as the occupied por-
tion of the old one. Then it
copies the contents of the old
segment to the new one and
adjusts the appropriate pointers
in the header to use the selector
of the new work segment.
Finally, DiSendRequest frees
the work segment (which OS/2
will now discard) and returns.
Note that the client can now call
DiDestroyRequest in order to
free the header and the new
work segment.

The DI functions and server
make as much memory avail-
able as possible in the calls to
DosFindFirst, then shrink the
memory to the required size
when the results are in. The
overhead of memory manage-
ment is relatively small, and the
DI functions conveniently
handle multiple filespecs in a
request, while hiding the work-
ings of the code from the client
application. Further, the time
spent managing memory is
made up by eliminating the calls
to DosFindNext and packaging
the results in a form that makes it
easy for applications to employ
functions like DiBuildResultsTbl
to access them. You could use
the DI functions in an applica-
tion any time the application
needs to use wildcards to search
for more than one file, when
time is critical, and when you
want to preserve the simplicity
of an application.

CONTINUED FROM PAGE 60
ized to NULL), the function
allocates the header segment
and a 65,535-byte work segment
and makes them shareable with

80
the server, which will use the
work segment for calls to
DosFindFirst. Later, when the
server makes this call, it will ask
DosFindFirst to return all files
found in one call, eliminating
the need to call DosFindNext.

When a filespec is added to a
request via DiMakeRequest, the
full path and filespec are stored
in the work segment. The func-
tion also calls DosReallocSeg to
enlarge the header and append a
new DIRINFORESULT struc-

(pointers in this
structure are set to
the path and file-
spec). Thus, the DI
functions can access
these structures as a
con t iguous ,
va r i ab l e - l eng th
array from an offset
in the header, elim-
inating the compli-
cated work with
pointers that would
be necessary if the
structures and file-
specs were inter-
mixed. Since the
actual number of
structures is deter-
mined by the
numRequests field
of the header struc-
ture, the header can
be extended indef-
initely. In addition,
this method allows
filespecs and paths
of varying length to
be stored and ac-

ture to it

THE SERVER ASKS

DOSFINDFIRST TO

RETURN ALL FILES

THAT MATCH THE

FILESPEC. AFTER

EACH CALL, THE

SERVER ADJUSTS

THE WORKSPACE

POINTER BEYOND

THE MOST RECENT

FILEFINDBUF

RESULTS.
cessed with little or no effort. As
a footnote, I should mention that
if a filespec’s path is the same as
the application’s (stored in the
work segment on the first call to
DiMakeRequest), the path is not
stored; its DIRINFORESULT
pointer is instead set to the
application's path.

' As used herein, “OS/2” refers to the OS/2 operating system jointly
developed by Microsoft and IBM.
2 As used herein, “DOS” refers to the MS-DOS and PC-DOS operating
systems.
3 For ease of reading, “Windows” refers to the Microsoft Windows
graphical environment. “Windows” is intended to refer to this Microsoft
product and not to such products generally.

NOVEMBER 1989

MSJ Source
Code Listings

All our source code
listings can be found
on Microsoft OnLine,

CompuServe®, and
two public access

bulletin boards. On
the East Coast,

users can call
(212) 889-6438 to

join the RamNet
bulletin board.

On the West Coast,
call (415) 284-9151

for the ComOne
bulletin board. In

either case, look for
the MSJ directory.

Communications
parameters for public

access bulletin
boards: 2400 baud,

word length 8, 1 stop
bit, full duplex,

no parity. ComOne
is also accessible

using a Hayes® 9600
baud modem.

Microsoft Corporation assumes
no liability for any damages
resulting from the use of the
information contained herein.

Microsoft, the Microsoft logo, MS,
and MS-DOS are registered
trademarks of Microsoft
Corporation. Windows,
Windows/286, and Windows/386
are trademarks of Microsoft
Corporation. AT is a registered
trademark of International
Business Machines Corporation.
ClickArt is a registered trademark
of T/Maker Company.
CompuServe is a registered
trademark of CompuServe, Inc.
GEnie is a trademark of General
Electric Corporation. Hayes is a
registered trademark of Hayes
Microcomputer Products, Inc.
Hewlett-Packard is a registered
trademark of Hewlett-Packard
Company. Lotus and 1-2-3 are
registered trademarks of Lotus
Development Corporation.
PostScript is a registered
trademark of Adobe Systems,
Inc. UNIX is a registered
trademark of American
Telephone & Telegraph
Company.

Mcrosaft 000-000-257

